
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Hastlayer by Lombiq Technologies aims to provide

software developers of the .NET platform a tool to accelerate
performance-critical parts of their programs with FPGAs. It is
primarily intended to be used by software developers with no
specific hardware design knowledge, allowing them to utilize the
power of FPGAs with their existing skills. To achieve this FPGA
agnostic aim, first, a dedicated firmware and software framework
has to be developed for the target platform to enable the execution
of the Hastlayer-generated core. In collaboration with Wigner
GPU Laboratory of the Wigner Research Centre for Physics, we
already developed several frameworks for Hastlayer. Here we
present the implementation of Hastlayer support for the Xilinx
SoC Zynq FPGA family.

Index Terms—Field programmable gate arrays, High level
synthesis

I. INTRODUCTION

EST performance on certain hardware requires specific
programming usually at lower levels, on the other hand,

this always restricts the flexibility of the applications. To find
the golden way between high-level programming and specific
hardware is an optimization Saint Graal.

The idea of high-level synthesis (HLS) in the field-
programmable gate array (FPGA) firmware development or in
more broadly in the RTL (Register Transfer Level) digital
designs is quite old. It was first proposed approximately in the
1980s. The first tools appeared in 1994 from Synopsys [1],
while the first real application in the industry was reported by
Sony in 2001 [2].

On one hand, it is promising for the existing firmware
developers working with traditional hardware description
languages (HDL) like VHDL (VHSIC Hardware Description
Language, where VHDL means Very High-Speed Integrated
Circuits) and Verilog to capture the complexities of the design
in a high-level way and generate the low-level implementation
from that abstraction. It would help to manage the bigger and
more complex designs with more ease and in a faster way
because a complex design usually starts with some models

The research was supported by the Hungarian National Research,

Development and Innovation Office (NKFIH) under the contract numbers
OTKA K135515. The support by the Wigner GPU Laboratory is also
appreciated.

E. Dávid is an FPGA developer of the Wigner DAQ Laboratory, Wigner
Research Centre for Physics, 29-33 Konkoly-Thege Miklós Str, H-1121
Budapest Hungary (e-mail: erno.david@wigner.hu).

written in high-level languages (e.g., MATLAB, C++,
SystemC) which will later be used as a golden reference.

On the other hand, HLS is also promising for traditional
software developers. Because some algorithms are more suited
for FPGAs than CPUs (Central Processing Unit) or GPUs
(Graphics Processing Unit), and it would be quite efficient to
move the algorithm already running on a CPU to an FPGA
without any register transfer level (RTL) digital design-specific
expertise.

Unfortunately, this goal was never fully achieved. There
were proprietary tools like Catapult C from Mentor Graphics
(actively developed between 2004 and 2011) [3] or Impulse C
(between 2003 and 2009), which was famous for its high-
frequency trading application. But they never became as
widespread as the standard FPGA vendor tools.

Later from the early 2010s, the two major FPGA vendors
Altera (now Intel) and Xilinx (now part of AMD), started to
actively develop their HLS solutions closely integrated with
their existing tools. Fortunately, this strategy continues, and
today we have full FPGA OpenCL support from both vendors.
Due to the improvement of technology and market forces, today
we have FPGA accelerator cards in the main public cloud data
centers just as GPU cards (e.g., Amazon F1, Azure Alveo
cards).

Hastlayer from Lombiq Technologies [4] can be considered
as an HLS tool that converts some parts of the .NET application
to RTL, which can be implemented by FPGAs. But it aims more
to fully hide the FPGA and OpenCL details from the targeted
.NET software developers. To deliver this high-level feature to
the .NET end-users, supporting tools and firmware and
software frameworks need to be developed to hide the FPGA
and OpenCL details and present a more abstract interface for
the upper layers.

Wigner Research Centre for Physics’ DAQ and Wigner GPU
Laboratory plays key role in the FPGA developments for high-
energy physics (HEP) [5-6].

In a joint project of the Wigner GPU Laboratory [7] and
Lombiq Technologies [8], have already developed several
Hastlayer support platforms for different FPGA cards. The first

D. El-Saig is a software developer at Lombiq Technologies Ltd., 14 Zrínyi
Str, H-1051 Budapest (e-mail: david.el-saig@lombiq.com).

Z. Lehóczky, is the director of the Lombiq Technologies Ltd., 14 Zrínyi Str,
H-1051 Budapest, Hungary (e-mail: zoltan.lehoczky@lombiq.com).

G. G. Barnaföldi is the leader of the Wigner GPU Laboratory, Wigner
Research Centre for Physics, 29-33 Konkoly-Thege Miklós Str, H-1121
Budapest Hungary (e-mail: barnafoldi.gergely@wigner.hu).

Implementing Hastlayer support for Xilinx SoC
Zynq FPGA family

E. Dávid, D. El-Saig, Z. Lehóczky, and G.G. Barnaföldi

B

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

was the Microsoft Catapult platform based on Altera Stratix V
FPGA. The second was the Xilinx Alveo data center cards
family based on Virtex UltraScale FPGAs [9]. And this report
provides details about the latest phase: supporting the Xilinx
Zynq-7000 SoC embedded FPGA family.

In the following sections, we describe the Hastlayer
generated core, the targeted test platforms, the Xilinx Vitis
OpenCL RTL Kernel acceleration flow, how to scale the kernel
clock frequency to the maximum safest value, and at the end,
we present our test results.

II. THE HASTLAYER-GENERATED CORE

The Hastlayer SDK (Software Development Kit) [10] is the
main toolset for Hastlayer development. It covers the whole
.NET acceleration flow: transforms the .NET assemblies, builds
the FPGA firmware, programs the target platform, and manages
the communication.

In the first step, the SDK converts the .NET code into a
VHDL module (the Hastlayer-generated core), which behaves
the same way as the original code. This core has few control
and status lines and a custom 32-bit data bus to communicate
with the outside world (Figure 1).

Fig 1. Hastlayer-generated core I/O ports

To enable Hastlayer to use the memory, read and write access

in a given .NET class member function, the .NET code should
access the data buffer through a specific class called
SimpleMemory, which is provided by the Hastlayer SDK.

The following simple example increments the first 32-bit
integer value by one in the data buffer:

public class SimpleIncrementExample
{
 public virtual void Run(SimpleMemory memory)
 {
 int cellIndex = 0;
 int value = memory.ReadInt32(cellIndex)
 memory.WriteInt32(cellIndex, value + 1);
 }
}

To implement a Hastlayer-generated core in an FPGA and to

enable communication with the main .NET application the
appropriate firmware and software layers have to be developed.
On the firmware level, the core has to be extended with a
control state machine and with a memory interface to provide
access to the main memory (typically external DDR memory).
On the software level, there must be an additional API layer that
allows core invocation and passing and receiving a data buffer
to and from the core. This support layer can be implemented in
different ways. It can be completely customized as it is in the

case of Nexys card support [11], where the .NET side and the
FPGA card is connected with a USB cable. Or it can be based
around PCIe bus communication as in the case of the Microsoft
Catapult platform and Xilinx Alveo cards.

III. TARGET PLATFORMS

This project phase targeted the embedded FPGA segments
typically with more limited FPGA resources than the data
center variants and typically with built-in ARM CPU cores. In
the previous phase, we just finished the Xilinx data center
Alveo card family support, which was natural to continue with
another FPGA family from Xilinx.

The Xilinx Zynq-7000 SoC FPGA family is one of the
popular FPGAs in the embedded segment (e.g., in the aerospace
industry). Their main feature is the built-in dual-core ARM
Cortex A9 CPU @667 MHz with an internal DDR memory
controller and with the capability to run full-featured 32-bit
Linux distributions like Ubuntu or in our case the officially
more supported PetaLinux. The Zynq-7000 family is fully
supported by the Xilinx Vitis tool acceleration flow.

For initial testing, the ZedBoard Zynq-7000 ARM/FPGA
SoC development board was chosen from Digilent as a widely
used development kit for Zynq projects (equipped with Zynq
7020 FPGA and 512MB DDR2 RAM). Later we switched to an
SoC module from Trenz Electronic (TE0715-04-30-1C
equipped with Zynq 7030 FPGA and 1024 MB DDR2 RAM).

Fig 2. Digilent ZedBoard Zynq-7000 and Trenz TE0715-04-30-1C SoC

module

IV. XILINX VITIS OPENCL RTL KERNEL

The Xilinx Vitis application acceleration development flow
is based on the industry-standard OpenCL environment and this
flow is fully supported on the Zynq-7000 family too [12]. This
primarily means that kernels written for GPUs in the OpenCL
language can be implemented on Xilinx FPGAs with little
modifications. In addition to the OpenCL language the Vitis
flow also allows providing the kernel in RTL form as VHDL or
Verilog source code which allows us to easily embed the
Hastlayer-generated VHDL core into the RTL kernel
framework and use the OpenCL flow for accelerating the main
.NET application.

Hastlayer
Generated Core

(VHDL)

Clock
Reset

Finished

MemberID
Started

CellIndex

DataOut
WriteEnable
WritesDone

DataIn
ReadEnable
ReadsDone

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Fig 3. Hastlayer-generated core as RTL kernel block diagram

The main interfaces of the Vitis RTL OpenCL kernel: clock

and reset, 32-bit AXI4-lite slave interface accessing the kernel’s
control and status registers from outside, and at least one built-
in AXI4 master interface to access the main memory (between
32 and 1024-bit wide data bus).

The control register block and the control state machine are
responsible for handling the incoming data buffer, extract the
header information, execute the Hastlayer-generated core, and
at the end pack the status information back into the header.

The custom AXI bridge and cache module handle the
memory read and write requests from the Hastlayer-generated
core and the control state machine. Both modules use the
Hastlayer custom 32-bit interface, which has to be adopted to
the AMBA AXI4 bus interface. The AXI4 interface typically
matched with the DDR memory controller data width and can
be between 32 and 1024-bit to match the external DDR memory
burst sizes. This allows more optimal DDR bandwidth usage
but increases the overhead in 32-bit accessing mode. To
mitigate this, the bridge implements a single associative cache
line. When the Hastlayer-generated core issues write or read
requests, first it is checked against the cache line. If the
requested address is in the cache line, the request is handled
immediately. If it is missed, then the core has to wait until the
data arrives or is written back to the DDR memory. This
significantly decreases memory access times in consecutive
cases.

By design, the Hastlayer-generated core is free to modify the
whole input buffer. There is no separated input and output
memory area. At the end of the processing, the CPU side will
receive the whole buffer.

Based on this working mode the RTL kernel function
receives the starting address of the data buffer, which holds a
small header section at the beginning, following with the actual
data content. This way the number of OpenCL memory buffer
transactions is reduced to one. This allows faster kernel
execution times. On a PCIe-based machine, it requires one host-
to-device transfer at the beginning and one device-to-host
transfer at the end of the kernel execution. On Zynq-based
cards, since the DDR memory is shared between the processor
system and the FPGA fabric, there is no actual data movement.
The OpenCL buffer is allocated in the physically contiguous
memory area and from the Hastlayer core accessible as a single
memory area.

This manifests as:

The OpenCL kernel function definition:
void hastip(unsigned int *buffer)

Input:
offset = buffer[0]
memberId = buffer[1]
dataArray = buffer[offset + 0 : offset + datasize - 1]

Output:
buffer[2] = hardwareExecutionTimeLo (lower 32-bit)
buffer[3] = hardwareExecutionTimeHi (upper 32-bit)

The overall system architecture is presented in Figure 4. The

main .NET application runs in the PetaLinux on the embedded
ARM CPU side. The Microsoft .NET Core SDK v3.1 fully
supports Zynq’s 32-bit ARM Cortex A9 processor systems. The
OpenCL RTL kernel with the Hastlayer-generated core resides
in the programmable FPGA fabric section and communicates
with the CPU side over an AXI interface. The main AXI
interconnect resides in the processor block and connects
together the CPU and the kernel with the built-in DDR memory
controller.

Fig 4. Overall system architecture

The OpenCL RTL kernel with the Hastlayer-generated core

invocation sequence is presented in Figure 5.
1) In the first step the .NET layer prepares the OpenCL kernel

buffer and fills the required header information and the user
data for processing.

2) Through standard OpenCL kernel invocation function calls
the API and the XRT triggers the control and state machine
(with register writes) to start the Hastlayer core launch.

3) First, the header information is parsed, and based on this
information the appropriate member function is started.

4) During the execution, only the core has access to the data
buffer.

5) When the core is done, the control state machine flushes the
cache and fills the header with the execution status details.

6) After executing the kernel, the buffer is returned to the
.NET application and it sees exactly the same content as if
executed by the original .NET code.

Hastlayer RTL Kernel

Control
State

Machine

AXI Bridge with Cache

ap_start

Control
Register

Block

Hastlayer Generated
Core

AXI4
32-1024-bit

master

AXI4-Lite
32-bit slave

ap_done

ap_ready

ap_idle

axi_ptr0

MemberId

Started

Finished

Clk

Reset

FPGA Fabric / HastlayerRTL KernelARM CPU / PetaLinux

External DDR
Memory

OpenCL API / XRT

.NET Application

Hastlayer

AXI Interconnect AXI Interconnect

Control
State

Machine

Control
Register

Block

Hastlayer
Generated

Core

AXI Bridge with CacheKernel

Userspace

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig 5. Hastlayer kernel invocation sequence

V. IMPLEMENTING KERNEL CLOCK FREQUENCY AUTO

SCALING

One of the difficulties when the FPGA firmware source code
is generated from a higher-level language like .NET is that the
resulting combinational logic complexity in the digital design
can vary between wide ranges depending on the complexity of
the initial .NET code, influenced by the chosen parallelism and
other implementation details. This can degrade the maximum
kernel frequency, especially when the FPGA resource usage
becomes denser.

In a handwritten FPGA firmware, this is easier to manage. It
is typically designed to use a fixed clock frequency and the
design verified during the STA (Static Timing Analysis) to
meet the required setup and hold timing rules. And when the
timing fails, the developer has to fine-tune the design to meet
the timing.

But in high-level synthesis cases like the Hastlayer, this
approach is less available to the .NET developers. In the case of
the data center Alveo cards (which is the main target for the
Xilinx OpenCL tools), this is solved by the kernel clock auto-
scaling feature. At the end of the fitting phase when the static
timing analysis reports are available, the maximum kernel
frequency is recalculated based on the worst negative slack.
This value is saved together with the XCLBIN file, and later
during the execution, this information is used to configure the
kernel clock frequency. This is a very useful feature because the
user always gets a runnable kernel on the first try without any
technical intervention. Unfortunately, this feature is not
supported during the Vitis embedded design flow. Only fixed
clock frequency modes are supported. If the routing fails at the
targeted frequency, then it has to be repeated again with a lower
clock frequency. This is a time-consuming process and the
existing users found the auto-scaling feature more convenient.

To achieve a similar feature on a Zynq-7000 family FPGA
three main steps had been done:
1) Instead of an MMCM/PLL in the fabric region configured

by Vitis, the kernel clock is provided by the PS (Processor
System) through one of the PS to PL configurable clock
source (FCLK0). This PLL is reconfigurable during a
normal operation between 1 and 250 MHz.

2) At the end of the Vivado routing phase the new kernel
clock frequency has to be recalculated based on the STA
timing report. Each failing path has to be evaluated
according to the timing requirements with multi-cycle

exceptions and the kernel clock period must be increased
by the largest negative slack. At the end of this process,
this clock information has to be updated in the XCLBIN
file.

3) During the execution on the Zynq device the kernel clock
frequency information has to be extracted from the
XCLBIN file and the FCLK0 clock should be reconfigured
according to this. To achieve this, the PetaLinux kernel
must be built with the "Xilinx PL clock enabler (xlnx,
fclk)" driver enabled.

VI. RESULTS

The Hastlayer SDK contains seventeen sample algorithms
covering different use case scenarios, beginning from a simple
memory read and write example to more complex ones e.g.
image processing or prime number calculations, and floating
point computations made with the posit number format [13] (for
the source code details see the GitHub repository) [14]. During
the development, we used these built-in samples to test the
functionality and benchmark the results.

Table I summarizes the overall performance results of the
samples: the execution time of the pure .NET version running
only on the CPU, the achieved kernel clock frequency, the
degree of the level of parallelization in the algorithm, the time
spent in the kernel (net FPGA) and the total execution time of
the accelerated .NET code (total FPGA), and the calculated
speedup value.

TABLE I
OVERALL SPEEDUP TEST RESULTS

Algorithm
CPU
[ms]

Kernel
freq.

[MHz]

Paral-
lelism

Net
FPGA

[ms]

Total
FPGA

[ms]

Speed
up

FSharpParallelAlgorithm 22137 143 280 209 249 88,9

Fix64Calculator 4416 143 10 769 801 5,5

GenomeMatcher 0 143 - 0 3 -

ImageProcessingAlgorithms 2839 111 25 29 63 45,1

Loopback 0 143 - 0 3 -

MemoryTest 0 143 - 0 3 -

MonteCarloPiEstimator 3151 125 77 31 40 78,8

ObjectOrientedShowcase 17 143 - 0 413 -

ParallelAlgorithm 20552 143 260 210 240 85,6

Posit32AdvancedCalculator 1 111 - 0 5 -

Posit32Calculator 133 42 2 555 572 0,2

Posit32FusedCalculator 86 143 - 44 430 0,2

PositCalculator 46233 143 - 6875 7274 6,4

PrimeCalculator 391 111 30 50 106 3,7

RecursiveAlgorithms 6 143 - 0 470 -

SimdCalculator 2 125 20 0 3 -

UnumCalculator 135 143 - 5 409 0,3

In most cases, the Hastlayer-generated VHDL core (net

FPGA) outperformed the pure software version (CPU), except
in the case of PrimeCalculator. But when we look at the total
execution time of accelerated version (total FPGA) then the
results are less favorable. Depending on the samples there is an
additional execution overhead between 3 and 400 milliseconds

External DDR
Memory

.NET
Application

Hastlayer
Generated

Core

Kernel buffer preparation

Hastlayer
Firmware

Framework

Handle the processed buffer

Kernel invocation Read header information

Write header information

Core memory accessLaunch core

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

(kernel invocation, communication, etc.) which degrades the
overall performance. Also in some cases, the software example
executed so fast that we were unable to measure the execution
time reliably in PetaLinux to calculate correctly the speedup
value.

Table II and Figure 6 summarizes the impact of different AXI

bus data widths and kernel clock frequency scenarios in a
synthetic memory test sample (MemoryTest algorithm) where
the average cell increment time was measured.

TABLE II

AVERAGE MEMORY CELL INCREMENT TIMES IN DIFFERENT AXI BUS DATA

WIDTH AND KERNEL FREQUENCY SCENARIOS (MEMORYTEST ALGORITHM)

AXI bus
data width

50
MHz

100
MHz

150
MHz

200
MHz

250
MHz

32-bit 632 ns 374 ns 299 ns 271 ns 245 ns

64-bit 354 ns 207 ns 163 ns 145 ns 132 ns

128-bit 260 ns 150 ns 109 ns 94 ns 82 ns

256-bit 202 ns 109 ns 78 ns 66 ns 57 ns

512-bit 170 ns 89 ns 63 ns 51 ns 43 ns

1024-bit 156 ns 81 ns 56 ns 43 ns 36 ns

Fig 6. Average memory cell increment times in different AXI bus data width

and kernel frequency scenarios (MemoryTest algorithm)

The results show that below certain kernel frequency and

data width the performance is suboptimal but above certain
limits, the result is saturated. If we include the results from
Table V then we can see that there are tradeoffs between the
AXI bus data width and the achievable kernel clock
frequencies.

VII. CONCLUSION

This report described the main key concepts implementing
Hastlayer support for the Xilinx SoC Zynq FPGA family and
presented some test results. The project achieved its main goals.
Now it is possible to run hardware-accelerated .NET
applications on the Zynq devices. The test results show that
moving the parallel computations into the FPGA fabric can
produce significant speedup in the execution time compared to
executing the whole algorithm on the built-in ARM CPU cores.
What remains is to further optimize the resource usage of the
Hastlayer-generated core and the supporting firmware
framework to achieve better resource utilization and higher
kernel clock frequency.

APPENDIX

Tables III, IV, and V summarizes the achievable final kernel
clock frequencies at different target frequencies. At 100 MHz,
almost all samples are routable except the
Posit32AdvancedCalculator, Posit32Calculator,
PrimeCalculator, and SimdCalculator sample, which contains
somewhat larger combinational logic. At 250 MHz, the result is
much more diverse. None of the samples are routable at that
high frequency in a Zynq FPGA, and the different final
frequencies after the auto-scaling procedure represent the
overall complexities of a given sample.

TABLE III

SCALED KERNEL CLOCK FREQUENCIES TARGETING 100 MHZ

Algorithm
AXI bus data width [bit]

32 64 128 256 512 1024

FSharpParallelAlgorithm 100 100 100 100 100 100

Fix64Calculator 100 100 100 100 100 100

GenomeMatcher 100 100 100 100 100 100

ImageProcessingAlgorithms 100 100 100 100 100 100

Loopback 100 100 100 100 100 100

MemoryTest 100 100 100 100 100 100

MonteCarloPiEstimator 100 100 100 100 100 100

ObjectOrientedShowcase 100 100 100 100 100 100

ParallelAlgorithm 100 100 100 100 100 100

Posit32AdvancedCalculator 94 94 94 94 94 94

Posit32Calculator 58 56 61 59 56 54

Posit32FusedCalculator 100 100 100 100 100 100

PositCalculator 100 100 100 100 100 100

PrimeCalculator 78 78 78 77 77 81

RecursiveAlgorithms 100 100 100 100 100 100

SimdCalculator 99 99 97 96 98 98

UnumCalculator 100 100 100 100 100 100

Average 96 96 96 96 96 96

TABLE IV

SCALED KERNEL CLOCK FREQUENCIES TARGETING 150 MHZ

Algorithm
AXI bus data width [bit]

32 64 128 256 512 1024

FSharpParallelAlgorithm 142 142 142 142 142 142

Fix64Calculator 142 142 142 142 142 142

GenomeMatcher 142 142 142 142 142 142

ImageProcessingAlgorithms 115 112 113 115 115 113

Loopback 142 142 142 142 142 142

MemoryTest 142 142 142 142 142 142

MonteCarloPiEstimator 132 131 129 133 131 133

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

50 100 150 200 250

Ti
m

e
pe

r
in

cr
em

en
t

[n
s]

Kernel frequencz [MHz]

32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

ObjectOrientedShowcase 142 142 142 142 142 142

ParallelAlgorithm 142 142 142 142 142 142

Posit32AdvancedCalculator 126 126 125 127 121 112

Posit32Calculator 42 44 43 41 41 43

Posit32FusedCalculator 142 142 142 142 142 142

PositCalculator 142 142 142 142 142 142

PrimeCalculator 126 125 123 123 123 122

RecursiveAlgorithms 142 142 142 142 142 142

SimdCalculator 142 142 142 142 142 141

UnumCalculator 142 142 142 142 142 142

Average 132 132 132 132 131 131

TABLE V

SCALED KERNEL CLOCK FREQUENCIES TARGETING 250 MHZ

Algorithm
AXI bus data width [bit]

32 64 128 256 512 1024

FSharpParallelAlgorithm 149 167 152 158 140 137

Fix64Calculator 189 192 189 179 156 150

GenomeMatcher 187 176 182 166 160 146

ImageProcessingAlgorithms 113 111 115 112 112 110

Loopback 221 221 208 187 175 175

MemoryTest 189 193 187 180 160 156

MonteCarloPiEstimator 129 130 127 125 126 127

ObjectOrientedShowcase 217 221 207 186 180 170

ParallelAlgorithm 174 166 164 160 156 150

Posit32AdvancedCalculator 95 94 94 84 73 43

Posit32Calculator 55 57 60 58 58 55

Posit32FusedCalculator 160 166 162 161 157 144

PositCalculator 225 225 210 187 160 162

PrimeCalculator 64 68 66 51 53 39

RecursiveAlgorithms 177 172 152 165 168 155

SimdCalculator 78 67 80 58 49 48

UnumCalculator 193 197 176 179 162 153

Average 154 154 149 141 132 125

REFERENCES

[1] Architectural Design of DSP ASICs: Tools and Techniques, Proceedings

of the 1995 DSPx Exhibition and Symposium, April 1995.
[2] G. Martin and G. Smith, High-Level Synthesis: Past, Present, and

Future, IEEE Design & Test of Computers vol. 26, no 4, pp- 18-25
July-Aug. 2009. DOI: 10.1109/MDT.2009.83

[3] Calypto acquires Mentor’s Catapult C, 2011, Accessed on: June 15,
2021, [Online] Available: https://www.eetimes.com/calypto-acquires-
mentors-catapult-c

[4] Z. Lehoczky et al., "Turning Software into Hardware — Hastlayer",
2016 IEEE International Symposium on Nanoelectronic and
Information Systems (iNIS), 16622630, January 2017 DOI:
10.1109/iNIS.2016.051

[5] AP. Buncic et al. [ALICE Collaboration], “Technical Design Report for
the Upgrade of the Online-Offline Computing System”, CERN-LHCC-
2015-006, ALICE-TDR-019, 2019. Accessed on: June 15, 2021,

[Online] Available: https://cds.cern.ch/record/2011297/files/ALICE-
TDR-019.pdf

[6] M. Arrigui et al. [ALICE Collaboration], “The ALICE DAQ: current
status and future challenges”, Computer Physics Communications, vol.
140, no 1–2, pp. 117-129, 2001. DOI: https://doi.org/10.1016/S0010-
4655(01)00262-4.

[7] Wigner GPU Laboratory Accessed on: June 15, 2021, [Online]
Available: http://gpu.wigner.hu

[8] Lombiq Technologies, Accessed on: June 15, 2021, [Online] Available:
http://lombiq.com

[9] GPU Day 2020, Hastlayer, Implementing on Xilinx Alveo Accelerator
Cards, https://gpuday.com/#schedule

[10] Hastlayer-SDK, Accessed on: June 15, 2021, [Online] Available:
https://github.com/Lombiq/Hastlayer-SDK

[11] Hastlayer website, Accessed on: June 15, 2021, [Online] Available:
https://hastlayer.com/

[12] Xilinx, Vitis Platform,Accessed on: June 15, 2021, [Online] Available:
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

[13] Z. Lehoczky et al., "High-level .NET software implementations of unum
type I and posit with simultaneous FPGA implementation using
Hastlayer", CoNGA '18: Proceedings of the Conference for Next
Generation Arithmetic, No. 4 pp 1–7 March 2018 DOI:
10.1145/3190339.3190343

[14] Hastlayer SDK GitHub page: Accessed on: June 15, 2021, [Online]
Available: https://github.com/Lombiq/Hastlayer-SDK

E. Dávid received the B.S. degree in
engineering informatics from Kandó
Kálmán Polytechnic, Budapest, Hungary
in 1997 and the M.S. degree in computer
engineering from Budapest University of
Technology and Economics, Budapest,
Hungary in 2011.
He becomes a junior research fellow in

Wigner Research Centre for Physics in 2014 and joined the
CERN LHC ALICE Collaboration, where he participating in
different projects as an FPGA firmware developer.

D. El-Saig was born in Budapest, Hungary
in 1990. Since 2018 he has been a software
engineer at Lombiq Technologies Ltd,
Budapest, Hungary. He was a software
engineer at ALGY Mining Ltd between
2013 and 2020.
He presented in the IEEE Symposium on
Computation Intelligence and Informatics

of 2018 as an associate of Antal Bejczy Center for Intelligent
Robotics, Óbuda University, Budapest, Hungary.

Z. Lehóczky co-founder and managing
director of Lombiq Technologies
(https://lombiq.com), originator of the
Hastlayer project. His main expertise is in
.NET software development and software
architecture design. Active in open-source,
core contributor of the ASP.NET (Core)
CMS Orchard, guest lecturer at Óbuda

University, John von Neumann Faculty of Informatics.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

G.G. Barnaföldi (PhD) received the M.S.
degree in physics and astronomy at the
Eötvös Loránd Univerisity, Budapest
Hungary in 2001, he did the Ph.D. degree
in 2006 at the same place.
He was an assistant professor at the
Information Technology Laboratory
between 2000 and 2008. In parallel,

starting from 2001 he was employed as a young research fellow
by the KFKI RMKI of the Hungarian Academy of Sciences. In
2008 he moved to the Kent State University, Kent, Ohio, USA
for a year as a PostDoc. Since 2009 he is at the Wigner Research
Centre for Physics, leading the Wigner GPU Laboratory, the
Hungarian ALICE Group, and the Heavy-ion Research group
at the Department for Theoretical Physics.
He joined the CERN LHC ALICE Collaboration in 2005, where
he is the national representative since 2013.
Dr. Barnaföldi’s awards and honors include the Györgyi Géza
prize, the Bürgen Scholar by the Academia Europea, the
Physics Prize of the Hungarian Academy of Sciences, and the
Best Talk prize of the 2016 Beijing Science and Technology
Fair.

