
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1

 
Abstract—Hastlayer by Lombiq Technologies aims to provide 

software developers of the .NET platform a tool to accelerate 
performance-critical parts of their programs with FPGAs. It is 
primarily intended to be used by software developers with no 
specific hardware design knowledge, allowing them to utilize the 
power of FPGAs with their existing skills. To achieve this FPGA 
agnostic aim, first, a dedicated firmware and software framework 
has to be developed for the target platform to enable the execution 
of the Hastlayer-generated core. In collaboration with Wigner 
GPU Laboratory of the Wigner Research Centre for Physics, we 
already developed several frameworks for Hastlayer. Here we 
present the implementation of Hastlayer support for the Xilinx 
SoC Zynq FPGA family. 
 

Index Terms—Field programmable gate arrays, High level 
synthesis 
 

I. INTRODUCTION 

EST performance on certain hardware requires specific 
programming usually at lower levels, on the other hand, 

this always restricts the flexibility of the applications. To find 
the golden way between high-level programming and specific 
hardware is an optimization Saint Graal. 

The idea of high-level synthesis (HLS) in the field-
programmable gate array (FPGA) firmware development or in 
more broadly in the RTL (Register Transfer Level) digital 
designs is quite old. It was first proposed approximately in the 
1980s. The first tools appeared in 1994 from Synopsys [1], 
while the first real application in the industry was reported by 
Sony in 2001 [2]. 

On one hand, it is promising for the existing firmware 
developers working with traditional hardware description 
languages (HDL) like VHDL (VHSIC Hardware Description 
Language, where VHDL means Very High-Speed Integrated 
Circuits) and Verilog to capture the complexities of the design 
in a high-level way and generate the low-level implementation 
from that abstraction. It would help to manage the bigger and 
more complex designs with more ease and in a faster way 
because a complex design usually starts with some models 
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written in high-level languages (e.g., MATLAB, C++, 
SystemC) which will later be used as a golden reference. 

On the other hand, HLS is also promising for traditional 
software developers. Because some algorithms are more suited 
for FPGAs than CPUs (Central Processing Unit) or GPUs 
(Graphics Processing Unit), and it would be quite efficient to 
move the algorithm already running on a CPU to an FPGA 
without any register transfer level (RTL) digital design-specific 
expertise. 

Unfortunately, this goal was never fully achieved. There 
were proprietary tools like Catapult C from Mentor Graphics 
(actively developed between 2004 and 2011) [3] or Impulse C 
(between 2003 and 2009), which was famous for its high-
frequency trading application. But they never became as 
widespread as the standard FPGA vendor tools. 

Later from the early 2010s, the two major FPGA vendors 
Altera (now Intel) and Xilinx (now part of AMD), started to 
actively develop their HLS solutions closely integrated with 
their existing tools. Fortunately, this strategy continues, and 
today we have full FPGA OpenCL support from both vendors. 
Due to the improvement of technology and market forces, today 
we have FPGA accelerator cards in the main public cloud data 
centers just as GPU cards (e.g., Amazon F1, Azure Alveo 
cards). 

Hastlayer from Lombiq Technologies [4] can be considered 
as an HLS tool that converts some parts of the .NET application 
to RTL, which can be implemented by FPGAs. But it aims more 
to fully hide the FPGA and OpenCL details from the targeted 
.NET software developers. To deliver this high-level feature to 
the .NET end-users, supporting tools and firmware and 
software frameworks need to be developed to hide the FPGA 
and OpenCL details and present a more abstract interface for 
the upper layers. 

Wigner Research Centre for Physics’ DAQ and Wigner GPU 
Laboratory plays key role in the FPGA developments for high-
energy physics (HEP) [5-6]. 

In a joint project of the Wigner GPU Laboratory [7] and 
Lombiq Technologies [8], have already developed several 
Hastlayer support platforms for different FPGA cards. The first 
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was the Microsoft Catapult platform based on Altera Stratix V 
FPGA. The second was the Xilinx Alveo data center cards 
family based on Virtex UltraScale FPGAs [9]. And this report 
provides details about the latest phase: supporting the Xilinx 
Zynq-7000 SoC embedded FPGA family. 

In the following sections, we describe the Hastlayer 
generated core, the targeted test platforms, the Xilinx Vitis 
OpenCL RTL Kernel acceleration flow, how to scale the kernel 
clock frequency to the maximum safest value, and at the end, 
we present our test results. 

 

II. THE HASTLAYER-GENERATED CORE 

The Hastlayer SDK (Software Development Kit) [10] is the 
main toolset for Hastlayer development. It covers the whole 
.NET acceleration flow: transforms the .NET assemblies, builds 
the FPGA firmware, programs the target platform, and manages 
the communication. 

In the first step, the SDK converts the .NET code into a 
VHDL module (the Hastlayer-generated core), which behaves 
the same way as the original code. This core has few control 
and status lines and a custom 32-bit data bus to communicate 
with the outside world (Figure 1). 

 

 
Fig 1.  Hastlayer-generated core I/O ports  

 
To enable Hastlayer to use the memory, read and write access 

in a given .NET class member function, the .NET code should 
access the data buffer through a specific class called 
SimpleMemory, which is provided by the Hastlayer SDK. 

The following simple example increments the first 32-bit 
integer value by one in the data buffer: 

 
public class SimpleIncrementExample 
{ 
  public virtual void Run(SimpleMemory memory) 
 { 
    int cellIndex = 0; 
    int value = memory.ReadInt32(cellIndex) 
    memory.WriteInt32(cellIndex, value + 1); 
  } 
} 

 
To implement a Hastlayer-generated core in an FPGA and to 

enable communication with the main .NET application the 
appropriate firmware and software layers have to be developed. 
On the firmware level, the core has to be extended with a 
control state machine and with a memory interface to provide 
access to the main memory (typically external DDR memory). 
On the software level, there must be an additional API layer that 
allows core invocation and passing and receiving a data buffer 
to and from the core. This support layer can be implemented in 
different ways. It can be completely customized as it is in the 

case of Nexys card support [11], where the .NET side and the 
FPGA card is connected with a USB cable. Or it can be based 
around PCIe bus communication as in the case of the Microsoft 
Catapult platform and Xilinx Alveo cards. 

 

III. TARGET PLATFORMS 

This project phase targeted the embedded FPGA segments 
typically with more limited FPGA resources than the data 
center variants and typically with built-in ARM CPU cores. In 
the previous phase, we just finished the Xilinx data center 
Alveo card family support, which was natural to continue with 
another FPGA family from Xilinx. 

The Xilinx Zynq-7000 SoC FPGA family is one of the 
popular FPGAs in the embedded segment (e.g., in the aerospace 
industry). Their main feature is the built-in dual-core ARM 
Cortex A9 CPU @667 MHz with an internal DDR memory 
controller and with the capability to run full-featured 32-bit 
Linux distributions like Ubuntu or in our case the officially 
more supported PetaLinux. The Zynq-7000 family is fully 
supported by the Xilinx Vitis tool acceleration flow. 

For initial testing, the ZedBoard Zynq-7000 ARM/FPGA 
SoC development board was chosen from Digilent as a widely 
used development kit for Zynq projects (equipped with Zynq 
7020 FPGA and 512MB DDR2 RAM). Later we switched to an 
SoC module from Trenz Electronic (TE0715-04-30-1C 
equipped with Zynq 7030 FPGA and 1024 MB DDR2 RAM). 

 

 
Fig 2.  Digilent ZedBoard Zynq-7000 and Trenz TE0715-04-30-1C SoC 

module 

 

IV. XILINX VITIS OPENCL RTL KERNEL 

The Xilinx Vitis application acceleration development flow 
is based on the industry-standard OpenCL environment and this 
flow is fully supported on the Zynq-7000 family too [12]. This 
primarily means that kernels written for GPUs in the OpenCL 
language can be implemented on Xilinx FPGAs with little 
modifications. In addition to the OpenCL language the Vitis 
flow also allows providing the kernel in RTL form as VHDL or 
Verilog source code which allows us to easily embed the 
Hastlayer-generated VHDL core into the RTL kernel 
framework and use the OpenCL flow for accelerating the main 
.NET application. 
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Fig 3.  Hastlayer-generated core as RTL kernel block diagram 

 
The main interfaces of the Vitis RTL OpenCL kernel: clock 

and reset, 32-bit AXI4-lite slave interface accessing the kernel’s 
control and status registers from outside, and at least one built-
in AXI4 master interface to access the main memory (between 
32 and 1024-bit wide data bus). 

The control register block and the control state machine are 
responsible for handling the incoming data buffer, extract the 
header information, execute the Hastlayer-generated core, and 
at the end pack the status information back into the header. 

The custom AXI bridge and cache module handle the 
memory read and write requests from the Hastlayer-generated 
core and the control state machine. Both modules use the 
Hastlayer custom 32-bit interface, which has to be adopted to 
the AMBA AXI4 bus interface. The AXI4 interface typically 
matched with the DDR memory controller data width and can 
be between 32 and 1024-bit to match the external DDR memory 
burst sizes. This allows more optimal DDR bandwidth usage 
but increases the overhead in 32-bit accessing mode. To 
mitigate this, the bridge implements a single associative cache 
line. When the Hastlayer-generated core issues write or read 
requests, first it is checked against the cache line. If the 
requested address is in the cache line, the request is handled 
immediately. If it is missed, then the core has to wait until the 
data arrives or is written back to the DDR memory. This 
significantly decreases memory access times in consecutive 
cases. 

By design, the Hastlayer-generated core is free to modify the 
whole input buffer. There is no separated input and output 
memory area. At the end of the processing, the CPU side will 
receive the whole buffer. 

Based on this working mode the RTL kernel function 
receives the starting address of the data buffer, which holds a 
small header section at the beginning, following with the actual 
data content. This way the number of OpenCL memory buffer 
transactions is reduced to one. This allows faster kernel 
execution times. On a PCIe-based machine, it requires one host-
to-device transfer at the beginning and one device-to-host 
transfer at the end of the kernel execution. On Zynq-based 
cards, since the DDR memory is shared between the processor 
system and the FPGA fabric, there is no actual data movement. 
The OpenCL buffer is allocated in the physically contiguous 
memory area and from the Hastlayer core accessible as a single 
memory area. 

 
 

This manifests as: 
 
The OpenCL kernel function definition: 
void hastip(unsigned int *buffer) 
 
Input: 
offset = buffer[0] 
memberId = buffer[1] 
dataArray = buffer[offset + 0 : offset + datasize - 1] 
 
Output: 
buffer[2] = hardwareExecutionTimeLo (lower 32-bit) 
buffer[3] = hardwareExecutionTimeHi (upper 32-bit) 

 
The overall system architecture is presented in Figure 4. The 

main .NET application runs in the PetaLinux on the embedded 
ARM CPU side. The Microsoft .NET Core SDK v3.1 fully 
supports Zynq’s 32-bit ARM Cortex A9 processor systems. The 
OpenCL RTL kernel with the Hastlayer-generated core resides 
in the programmable FPGA fabric section and communicates 
with the CPU side over an AXI interface. The main AXI 
interconnect resides in the processor block and connects 
together the CPU and the kernel with the built-in DDR memory 
controller. 

 

 
Fig 4.  Overall system architecture 

 
 
The OpenCL RTL kernel with the Hastlayer-generated core 

invocation sequence is presented in Figure 5. 
1) In the first step the .NET layer prepares the OpenCL kernel 

buffer and fills the required header information and the user 
data for processing. 

2) Through standard OpenCL kernel invocation function calls 
the API and the XRT triggers the control and state machine 
(with register writes) to start the Hastlayer core launch. 

3) First, the header information is parsed, and based on this 
information the appropriate member function is started. 

4) During the execution, only the core has access to the data 
buffer. 

5) When the core is done, the control state machine flushes the 
cache and fills the header with the execution status details. 

6) After executing the kernel, the buffer is returned to the 
.NET application and it sees exactly the same content as if 
executed by the original .NET code. 
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Fig 5.  Hastlayer kernel invocation sequence 

 

V. IMPLEMENTING KERNEL CLOCK FREQUENCY AUTO 

SCALING 

One of the difficulties when the FPGA firmware source code 
is generated from a higher-level language like .NET is that the 
resulting combinational logic complexity in the digital design 
can vary between wide ranges depending on the complexity of 
the initial .NET code, influenced by the chosen parallelism and 
other implementation details. This can degrade the maximum 
kernel frequency, especially when the FPGA resource usage 
becomes denser. 

In a handwritten FPGA firmware, this is easier to manage. It 
is typically designed to use a fixed clock frequency and the 
design verified during the STA (Static Timing Analysis) to 
meet the required setup and hold timing rules. And when the 
timing fails, the developer has to fine-tune the design to meet 
the timing.  

But in high-level synthesis cases like the Hastlayer, this 
approach is less available to the .NET developers. In the case of 
the data center Alveo cards (which is the main target for the 
Xilinx OpenCL tools), this is solved by the kernel clock auto-
scaling feature. At the end of the fitting phase when the static 
timing analysis reports are available, the maximum kernel 
frequency is recalculated based on the worst negative slack. 
This value is saved together with the XCLBIN file, and later 
during the execution, this information is used to configure the 
kernel clock frequency. This is a very useful feature because the 
user always gets a runnable kernel on the first try without any 
technical intervention. Unfortunately, this feature is not 
supported during the Vitis embedded design flow. Only fixed 
clock frequency modes are supported. If the routing fails at the 
targeted frequency, then it has to be repeated again with a lower 
clock frequency. This is a time-consuming process and the 
existing users found the auto-scaling feature more convenient. 

To achieve a similar feature on a Zynq-7000 family FPGA 
three main steps had been done: 
1) Instead of an MMCM/PLL in the fabric region configured 

by Vitis, the kernel clock is provided by the PS (Processor 
System) through one of the PS to PL configurable clock 
source (FCLK0). This PLL is reconfigurable during a 
normal operation between 1 and 250 MHz. 

2) At the end of the Vivado routing phase the new kernel 
clock frequency has to be recalculated based on the STA 
timing report. Each failing path has to be evaluated 
according to the timing requirements with multi-cycle 

exceptions and the kernel clock period must be increased 
by the largest negative slack. At the end of this process, 
this clock information has to be updated in the XCLBIN 
file. 

3) During the execution on the Zynq device the kernel clock 
frequency information has to be extracted from the 
XCLBIN file and the FCLK0 clock should be reconfigured 
according to this. To achieve this, the PetaLinux kernel 
must be built with the "Xilinx PL clock enabler (xlnx, 
fclk)" driver enabled. 

 

VI. RESULTS 

The Hastlayer SDK contains seventeen sample algorithms 
covering different use case scenarios, beginning from a simple 
memory read and write example to more complex ones e.g. 
image processing or prime number calculations, and floating 
point computations made with the posit number format [13] (for 
the source code details see the GitHub repository) [14]. During 
the development, we used these built-in samples to test the 
functionality and benchmark the results. 

Table I summarizes the overall performance results of the 
samples: the execution time of the pure .NET version running 
only on the CPU, the achieved kernel clock frequency, the 
degree of the level of parallelization in the algorithm, the time 
spent in the kernel (net FPGA) and the total execution time of 
the accelerated .NET code (total FPGA), and the calculated 
speedup value. 

TABLE I 
OVERALL SPEEDUP TEST RESULTS  

Algorithm 
CPU 
[ms]

Kernel 
freq. 

[MHz]

Paral-
lelism

Net 
FPGA 

[ms]

Total 
FPGA 

[ms]

Speed 
up

FSharpParallelAlgorithm 22137 143 280 209 249 88,9

Fix64Calculator 4416 143 10 769 801 5,5

GenomeMatcher 0 143 - 0 3 -

ImageProcessingAlgorithms 2839 111 25 29 63 45,1

Loopback 0 143 - 0 3 -

MemoryTest 0 143 - 0 3 -

MonteCarloPiEstimator 3151 125 77 31 40 78,8

ObjectOrientedShowcase 17 143 - 0 413 -

ParallelAlgorithm 20552 143 260 210 240 85,6

Posit32AdvancedCalculator 1 111 - 0 5 -

Posit32Calculator 133 42 2 555 572 0,2

Posit32FusedCalculator 86 143 - 44 430 0,2

PositCalculator 46233 143 - 6875 7274 6,4

PrimeCalculator 391 111 30 50 106 3,7

RecursiveAlgorithms 6 143 - 0 470 -

SimdCalculator 2 125 20 0 3 -

UnumCalculator 135 143 - 5 409 0,3

 
In most cases, the Hastlayer-generated VHDL core (net 

FPGA) outperformed the pure software version (CPU), except 
in the case of PrimeCalculator. But when we look at the total 
execution time of accelerated version (total FPGA) then the 
results are less favorable. Depending on the samples there is an 
additional execution overhead between 3 and 400 milliseconds 
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(kernel invocation, communication, etc.) which degrades the 
overall performance. Also in some cases, the software example 
executed so fast that we were unable to measure the execution 
time reliably in PetaLinux to calculate correctly the speedup 
value. 

 
Table II and Figure 6 summarizes the impact of different AXI 

bus data widths and kernel clock frequency scenarios in a 
synthetic memory test sample (MemoryTest algorithm) where 
the average cell increment time was measured. 

 
TABLE II 

AVERAGE MEMORY CELL INCREMENT TIMES IN DIFFERENT AXI BUS DATA 

WIDTH AND KERNEL FREQUENCY SCENARIOS (MEMORYTEST ALGORITHM) 

AXI bus 
data width 

50 
MHz 

100 
MHz 

150 
MHz 

200 
MHz 

250 
MHz 

32-bit 632 ns 374 ns 299 ns 271 ns 245 ns 

64-bit 354 ns 207 ns 163 ns 145 ns 132 ns 

128-bit 260 ns 150 ns 109 ns 94 ns 82 ns 

256-bit 202 ns 109 ns 78 ns 66 ns 57 ns 

512-bit 170 ns 89 ns 63 ns 51 ns 43 ns 

1024-bit 156 ns 81 ns 56 ns 43 ns 36 ns 

 

 
Fig 6.  Average memory cell increment times in different AXI bus data width 

and kernel frequency scenarios (MemoryTest algorithm) 

 
The results show that below certain kernel frequency and 

data width the performance is suboptimal but above certain 
limits, the result is saturated. If we include the results from 
Table V then we can see that there are tradeoffs between the 
AXI bus data width and the achievable kernel clock 
frequencies. 

VII. CONCLUSION 

This report described the main key concepts implementing 
Hastlayer support for the Xilinx SoC Zynq FPGA family and 
presented some test results. The project achieved its main goals. 
Now it is possible to run hardware-accelerated .NET 
applications on the Zynq devices. The test results show that 
moving the parallel computations into the FPGA fabric can 
produce significant speedup in the execution time compared to 
executing the whole algorithm on the built-in ARM CPU cores. 
What remains is to further optimize the resource usage of the 
Hastlayer-generated core and the supporting firmware 
framework to achieve better resource utilization and higher 
kernel clock frequency. 

 

APPENDIX 

Tables III, IV, and V summarizes the achievable final kernel 
clock frequencies at different target frequencies. At 100 MHz, 
almost all samples are routable except the 
Posit32AdvancedCalculator, Posit32Calculator, 
PrimeCalculator, and SimdCalculator sample, which contains 
somewhat larger combinational logic. At 250 MHz, the result is 
much more diverse. None of the samples are routable at that 
high frequency in a Zynq FPGA, and the different final 
frequencies after the auto-scaling procedure represent the 
overall complexities of a given sample. 

 
TABLE III 

SCALED KERNEL CLOCK FREQUENCIES TARGETING 100 MHZ 

Algorithm 
AXI bus data width [bit] 

32 64 128 256 512 1024 

FSharpParallelAlgorithm 100 100 100 100 100 100 

Fix64Calculator 100 100 100 100 100 100 

GenomeMatcher 100 100 100 100 100 100 

ImageProcessingAlgorithms 100 100 100 100 100 100 

Loopback 100 100 100 100 100 100 

MemoryTest 100 100 100 100 100 100 

MonteCarloPiEstimator 100 100 100 100 100 100 

ObjectOrientedShowcase 100 100 100 100 100 100 

ParallelAlgorithm 100 100 100 100 100 100 

Posit32AdvancedCalculator 94 94 94 94 94 94 

Posit32Calculator 58 56 61 59 56 54 

Posit32FusedCalculator 100 100 100 100 100 100 

PositCalculator 100 100 100 100 100 100 

PrimeCalculator 78 78 78 77 77 81 

RecursiveAlgorithms 100 100 100 100 100 100 

SimdCalculator 99 99 97 96 98 98 

UnumCalculator 100 100 100 100 100 100 

Average 96 96 96 96 96 96 

 
TABLE IV 

SCALED KERNEL CLOCK FREQUENCIES TARGETING 150 MHZ 

Algorithm 
AXI bus data width [bit] 

32 64 128 256 512 1024 

FSharpParallelAlgorithm 142 142 142 142 142 142 

Fix64Calculator 142 142 142 142 142 142 

GenomeMatcher 142 142 142 142 142 142 

ImageProcessingAlgorithms 115 112 113 115 115 113 

Loopback 142 142 142 142 142 142 

MemoryTest 142 142 142 142 142 142 

MonteCarloPiEstimator 132 131 129 133 131 133 
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ObjectOrientedShowcase 142 142 142 142 142 142 

ParallelAlgorithm 142 142 142 142 142 142 

Posit32AdvancedCalculator 126 126 125 127 121 112 

Posit32Calculator 42 44 43 41 41 43 

Posit32FusedCalculator 142 142 142 142 142 142 

PositCalculator 142 142 142 142 142 142 

PrimeCalculator 126 125 123 123 123 122 

RecursiveAlgorithms 142 142 142 142 142 142 

SimdCalculator 142 142 142 142 142 141 

UnumCalculator 142 142 142 142 142 142 

Average 132 132 132 132 131 131 

 
TABLE V 

SCALED KERNEL CLOCK FREQUENCIES TARGETING 250 MHZ 

Algorithm 
AXI bus data width [bit] 

32 64 128 256 512 1024 

FSharpParallelAlgorithm 149 167 152 158 140 137 

Fix64Calculator 189 192 189 179 156 150 

GenomeMatcher 187 176 182 166 160 146 

ImageProcessingAlgorithms 113 111 115 112 112 110 

Loopback 221 221 208 187 175 175 

MemoryTest 189 193 187 180 160 156 

MonteCarloPiEstimator 129 130 127 125 126 127 

ObjectOrientedShowcase 217 221 207 186 180 170 

ParallelAlgorithm 174 166 164 160 156 150 

Posit32AdvancedCalculator 95 94 94 84 73 43 

Posit32Calculator 55 57 60 58 58 55 

Posit32FusedCalculator 160 166 162 161 157 144 

PositCalculator 225 225 210 187 160 162 

PrimeCalculator 64 68 66 51 53 39 

RecursiveAlgorithms 177 172 152 165 168 155 

SimdCalculator 78 67 80 58 49 48 

UnumCalculator 193 197 176 179 162 153 

Average 154 154 149 141 132 125 
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