Quisner
GPU Lab

Build Systems,
Version Control,
Integrated Development
Environment

Lectures on Modern Scientific Programming
Wigner RCP
23-25 November 2015

Build System

Please, no more compile.sh

D. Berényi - M. F. Nagy-Egri

How do compiled languages work?

D. Berenyi - M. F. Nagy-Egri

How does a C/C++ application compile?

vector
« Headers

Application.cpp « Contain the declaration of functions
» Adeclaration consists of the nhame of
the function, and its signature
« The signature are the types of the
inputs and the type of the output
Particle.cpp func(M,V) -V
» Sources
» Contain the definition of functions
« The definition is the actual body of
the function, the series of commands
to execute

algorithm

FileReader.cpp

soplcaton.cpp_

FieReadercop

| partcecor
1

jostream

RK4.hpp

Solver.cpp
Interaction.hpp

Sources
Headers

D. Berenyi - M. F. Nagy-Egri

How does a C/C++ application compile?

vector

Application.cpp
algorithm

FileReader.cpp
jostream

Particle.cpp
RK4.hpp

Solver.cpp
Interaction.hpp

I Sources

Headers

D. Berenyi - M. F. Nagy-Egri

Each source file is a translational unit
Source files reference (include) n
headers
Headers may reference each other
C/C++ has a One Defintion Rule
« Multiple inclusions of a header would
violate ODR
» Headers can be guarded against
multiple inclusions (Include Guard)
Why do we split code like this if it’s so
complicated?
» Clear seperation of features from
implementation
« Compile times (see later)

How does a C++ application compile?

vector * Object files
Application.cpp Application.o contain decorated
algorithm machine code

: , * They contain the
FileReader.cpp FileReader.o native binary of

the function bodies

Particle.cpp « Decoration consists

jostream

RK4.hpp of compiler
generated
identifiers to
Interaction.hpp ﬁ functions called
ﬁ symbols
. Objects
Compiler

D. Berenyi - M. F. Nagy-Egri __operator*(classMat,classVec)->classVec

How does a C++ application compile?

vector

Application.cpp Application.o
FileReader.cpp FileReader.o

Particle.cpp

algorithm

MyApp.exe

jostream

Particle.o

RK4.hpp

MyLib.dll

Solver.cpp Solver.o

Interaction.hpp

1

Linker

Compiler

D. Berenyi - M. F. Nagy-Egri

How does a C++ application compile?

* Linking an executable

* The linker inspects all object files, and looks for a special function
(called main)

» Checks which functions are actually needed to create a functional
executable and throw away the rest

* |f some library is marked for linking, include those symbols too

* Some functions may be compiled multiple times
* If the binaries to the same symbol match, throw away all but one
 If they mismatch, throw a link time error

* |f there is some symbol missing, throw a link time error

» By separating code to headers and sources, we minimize the
chance of compiling the same function multiple times

D. Berényi - M. F. Nagy-Egri

Static versus dynamic libraries

Static

* Linking statically triggers
inclusion of symbols directly
into the executable

* Results in faster code

* If many executables refer to
the same library, they all
include the same code

D. Berényi - M. F. Nagy-Egri

Dynamic

 Linking dynamically triggers
including only a reference to
the symbol

* Results in smaller executable

* If many executable refer to
the same library, the code
exists only once on disk

What is a Build System?

* A tool that takes care of building your application in the
fastest way possible with minimal user effort.

* The input is a make file, and the output is one or more binary/
ies (hopefully). &

« Examples of build Systems:
* GNU Make
* NMake
« MSBuild
* Ninja
 Qmake
* CMake

D. Berenyi - M. F. Nagy-Egri

Why use a Build System?

e Didn’t | just say ,,Minimal user effort”?!
 Build Systems aim at being as comfortable to use as possible
» User declares the task, instead of specifying what to do

» Declarative DSL, not imperative
* Didn’t | just say ,,Maximum throughput”?!

» Detects the minimal portion of the program that must be recompiled
when editing code.
» Uses time stamps

* Processes independent parts of the build tasks in parallel
» Requires learning, but pays off in the long run!

D. Berenyi - M. F. Nagy-Egri

Choosing a build system

Build System Human readable Szl Portable Generator
front-end

GNU Make

NMake v

MSBuild (V) v
Ninja

Scons v
Waf v
Invoke-Build v
v
v

RN

<
<
<

QMake
CMake

<
<

()

D. Berenyi - M. F. Nagy-Egri

GNU Make

 Part of the GNU open-source
SoUReEs = b software stack
Objs are all the sources, with .cpp replaced

by .O [[° [

OBJS := $(SOURCES:.cpp=.0) e [t is included in all Linux
all: t . . .

tCI‘]on?lplle tl?f(la binary 't' by calllng the comp |Ier d]Str]bUtlonS

with cflags, Iflags, and any libs (i deﬂned) and .

the st of objects. » User provides set of tasks
t: $(0BJS)

(LrLags) EIEG)S(CFLAGS) -0 t $(0BIS) $ * Task name

Get a .o from a C by caII|ng compiler with ¢ Dependency Of taSk

cflags and includes (if defined)

Cpp.o: « Command-line to execute

; $(CC) $(CFLAGS) $(INCLUDES) -c
<

D. Berenyi - M. F. Nagy-Egri

NMake

e Part of Microsoft’s Visual
SOURCES := t.cpp Studio software stack

Objs are all the sources, with .cpp replaced

oo = $(SOURCES:-cop=.0 » Should be considered legacy
all: t .
Compile the binary 't' by calling the ¢ User prOV]deS Set Of taSkS
S%Wnpellg)r E\ll\ll’:t(::lhtﬁfelallsst ClJf‘la ?egtr;d any libs (if ° Task name

t: $(0BJS)
(LrLacs) SIGELP(CFLAGS) -0 t $(0BIS) $ ° Dependency of task
Get a .o from_ a .cpp by calling compiler ¢ Command'l]ne tO eXGCUte
with cflags and includes le defined)
“<PpP-0: » Cannot perform tasks in

$(CC) $(CFLAGS) $(INCLUDES) -

c < parallel

D. Berenyi - M. F. Nagy-Egri

MSBuild

<?xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://
schemas.microsoft.com/developer/msbuild/
2003">

<PropertyGroup><MyReleaseOutput>.
\release</MyReleaseOutput>

</PropertyGroup>

<ItemGroup> <MyReleaseFiles Include=".
\bin\debug*.*" />

</ItemGroup> <Target Name="Build">
<Message Text="Building msbuildintro" />
<MSBuild Projects="msbuildintro.csproj"
Targets="Build" /> </Target> <Target
Name="Release" DependsOnTargets="Build">
<MakeDir Directories="$(MyReleaseOutput)" /
> <Copy SourceFiles="@(MyReleaseFiles)"
DestinationFolder="$(MyReleaseOutput)" /> </
Target>

</Project>

D. Berényi - M. F. Nagy-Egri

* The build system that is
currently used by Microsoft’s
Visual Studio

* |t has been open-sourced and
available on Linux

 XML-based

 Limited human-readability

 Best used with a graphical fron
end

Ninja

cflags = -Wall -Werror

rule cc * Incredibly fast build system

command = gcc scflags -c 5in -0 sout » Sacrifices human readability
- DSL favors not the user, but
the machine

* |t is meant to be generated
by other tools, not hand

If left unspecified, builds get the outer Scflags.
build foo.o: cc foo.c

But you can shadow variables like cflags for a
particular build.

build special.o: cc special.c
cflags = -Wall

The variable was only shadowed for the scope aUthored
of special.o; . P
ortable
Subsequent build lines get the outer (original)
o » Open-source

build bar.o: cc bar.c

D. Berenyi - M. F. Nagy-Egri

QMake

* Make file generator
* Provide one input

CONFIG += gt debug * Ability to produce make files f
HEADERS += hello.h multiple other build systems
SOURCES += hello.cpp o

SOURCES += main.cpp PO rta Dle

win32 { SOURCES += hellowin.cpp } o Open -source

unix { SOURCES += hellounix.cpp } !exists(.

main.cpp) { error("No main.cpp file * Designed to serve the needs o
found”) } h P .

win32:debug { CONFIG += console } t S Qt rOJ eCt

D. Berenyi - M. F. Nagy-Egri

CMake

* Make file generator

* Portable

* Open-source
PROJECT(my_app)
LIST(SOURCES) * Knows most languages by default
APPEND(SOURCES main.cpp The known ones are EASY to use
vector.cpp) » Others can be taught
ADD_EXECUTABLE($. .
{PROJECT_NAME} SOURCES) * DSL script language sometimes

unfriendly

* Most cross-platform projects use it

D. Berenyi - M. F. Nagy-Egri

Use something

» We are not workflow nazis anything is better than compile.sh

* |[f you don’t know any build system,
we highly recommend learning CMake
* Extremely simple for small projects
 Scales well (depending on scripting affinity/skill)
* |t is portable
* [t is mainstream (has great momentum)
 Actively being developed (and is actually evolving)

* Even if you know one, we recommend giving CMake a chance

D. Berenyi - M. F. Nagy-Egri

CMake+CTest+CPack+Cdash = EXIT SUCCESS

* Kitware is the company behind the CMake suite of tools

 Full-fledged scripting language to do virtually anything
e [t is (finally) documented
 Gazillions of tutorials online

* Feature missing?
* |t’s open-source, so feel free to contribute
* Don’t have time? Hire us to do it!

* Big projects using CMake suite of tools

 Bullet Physics Engine, CLion, Compiz, cURL, ROOT, GEANT4,
GROMACS, KDE, libPNG, LAPACK, LLVM, Clang, MySQL, OGRE, OpenCYV,
SFML, zlib, ...

D. Berenyi - M. F. Nagy-Egri

Why strive on remaining portable

* Portability is important!

* Today, you might write the code for yourself, but tomorrow you might
have to give it to a collegue

* |f your code is bound to a specific OS, compiler, etc. They will be more
reluctant to use your code

» Dependencies

* The portability of code is the union of restrictions imposed by:
* Tools required to build the application
« Environment required to run the application

 Prefer portable tools over non-portable (have good reason to defect)
« Understand the costs of depending upon external software (even 0OSS)

D. Berenyi - M. F. Nagy-Egri

What can CMake do for you?

A decent scripting language for authoring make files.

* |t is not declarative, but imperative
(more powerful, but makes room for errors)

* Multiple (semi-)automated ways of discovering dependencies

* Ability to separate common build rules from platform,
compiler specific rules

D. Berenyi - M. F. Nagy-Egri

What can CMake do for you?

Research
project

e Physics
library

D. Berényi - M. F. Nagy-Egri

0t| g

Top-level CMakelists.txt

cmake_minimum_required (VERSION 2.8.11)
CMakelists files in this project can

refer to the root source directory of the project as $
{RESEARCH_SOURCE_DIR} and

to the root binary directory of the project as ${RESEARCH_BINARY_DIR}.
project (RESEARCH)

Recurse into the ,phys" and ,app" subdirectories. This does not actually

cause another cmake executable to run. The same process will walk throug
the project's entire directory structure.

add_subdirectory (phys)

add_subdirectory (app)

D. Berenyi - M. F. Nagy-Egri

Library CMakelLists.txt

cmake_minimum_required (VERSION 2.8.11)

Create a library called ,Phys" which includes the source files ,stuff.cpp” and
,more.cpp”.

The extension is already found. Any number of sources could be listed here.
add_library (Phys src/stuff.cpp src/more.cpp)

Make sure the compiler can find include files for our Phys library

when other libraries or executables link to Phys
target_include_directories (Phys PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/inc)

D. Berenyi - M. F. Nagy-Egri

Application CMakelLists.txt

cmake_minimum_required (VERSION 2.8.11)

Add executable called ,Application” that is built from the source files
,main.cpp”. The extensions are automatically found.
add_executable (Application src/main.cpp)

Make sure the compiler can find include files for our Application sources

target_include_directories (Application PUBLIC $
{CMAKE_CURRENT_SOURCE_DIR}/inc)

Link the executable to the Phys library. Since the Phys library has

public include directories we will use those link directories when building
Application

target_link_libraries (Application LINK_PUBLIC Phys)

D. Berenyi - M. F. Nagy-Egri

uisner

Configuring the build system GPU Lab

PS C:\Users\Matty\Build\Research\NMake> cmake -G "NMake Makefiles" C:
\Users\Matty\OneDrlve\Develop\Tests\CMake\CMake example\
- The C compiler identification is MSVC 19.0.23026.0
-- The CXX compiler identification is MSVC 19.0.23026.0
-- Check for working C compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amdé4/cl.exe
-- Check for working C compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amdé4/cl.exe -- werks
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amdé4/cl.exe
-- Check for working CXX compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amdé4/cl.exe --jworks
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: C:/Users/Matty/Build/Research/NMake

Invoking the build system Wianar

PS C:\Users\Matty\Build\Research\NMake> nmake

Microsoft (R) Program Maintenance Utility Version 14.00.23026.0
Copyright (C) Microsoft Corporation. All rights reserved.

Scanning dependencies of target Phys

[20%] Building CXX object phys/CMakeFiles/Phys.dir/src/stuff.cpp.obj
stuff.cpp

[40%] Building CXX object phys/CMakeFiles/Phys.dir/src/more.cpp.obj
more.cpp

[60%] Linking CXX static library Phys.lib

[60%] Built target Phys

Scanning dependencies of target Application

[80%] Building CXX object app/CMakeFiles/Application.dir/src/main.cpp.obj
main.cpp

[100%] Linking CXX executable Application.exe

[100%] Built target Application

Few things to note

* Where did we specify in the make scripts how to invoke the
compiler?
» CMake looks for installed compilers and choses one it likes
« Can be overriden when configuring the build

 What are the actual compiler switches, to make things work?

« User must not need to know compiler options in the most common
cases

« Can be extensively customized if needed

* What order must things be built?
« CMake builds dependency graph and generates make files accordingly

D. Berenyi - M. F. Nagy-Egri

Just the tip of the iceberg

» CMake scripts are not declarative,
but an imperative script language

* Turing complete (you can do ANYTHING with it)

* file command
* Write to a file
* Read from a file
* Hash a file
* Create directories
* Download files
 Upload files
* Collect file names matching regex

D. Berenyi - M. F. Nagy-Egri

What about my dependencies?

* Depending on a library built alongside the application is
simple, but what about external dependencies?

* Find module

* Module config files look for a given library in the most common install
locations
* On Linux it’s fairly trivial, on Windows it usually relies on env. vars.

« |f the library is found, it sets some variables that facilitate
consumption

* |f not, it prompts the user to provide the root directory of the
installation

. E?Aeli(e are 143 pre-installed FindModule.cmake files shipping with
ake.

 Let us omit the body of such a file. No black magic, but it is
vastly outside to scope of this showcase.

D. Berenyi - M. F. Nagy-Egri

Application CMakeLists.txt

Look for common installation layouts of MPI
If found, it will set some variables, otherwise it will throw an error
find_package (MPI REQUIRED)

Make sure our application’s sources find the include files of MPI
target_include_directories (Application PUBLIC ${MPI_INCLUDE_DIRS})

Link the executable to the MPI library.
target_link_libraries (Application ${MPI_LIBRARIES})

D. Berenyi - M. F. Nagy-Egri

But we can do better

* Couldn’t everything be done automatically?

» Package config

» Package config files provide end-users with the exact layout of a given
installation and all the tasks needed to consume the library

* The libraries will always be found without user interaction, no matter
how exotic the installation is

 How does it work?

* Windows, HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE registry
entries hold paths for user wide and system wide registered packages

* Linux, S(HOME)/.cmake/packages folder holds files with package
paths

D. Berenyi - M. F. Nagy-Egri

Application CMakeLists.txt

Look for a registered cIFFT installation
Without ,,PACKAGE" it starts by looking for package and then for modules

find_package (CLFFT PACKAGE REQUIRED)

We don’t need to set any include directories, as the package promotes
usage to consumers

Link the executable to the clFFT library.
target_link_libraries (Application PUBLIC CLFFT)

D. Berenyi - M. F. Nagy-Egri

Unit Testing

* Writing modular code is good
« Easier to maintain
» Better chance at being reusable
» Faster to compile (!)
* Testable

 Imagine our phys library to contain only the impementations of
physical phenomena

 This code might be reused elsewhere, our concrete simulation
might only be one use case

 Seeing the expected results in one application does not mean
that phys contains no bugs

D. Berenyi - M. F. Nagy-Egri

Unit Testing

* |solate parts of the code that can stand on it’s own

* Create minimal use cases that have predictable outcome
 Vector addition
e Matrix multiplication
 Periodic boundaries
« Numerical stability
* Etc.

* Check if all of your code behaves as expected in these minimal
use cases

o |f all your code passes Unit Testing, you have a much better
chance to avoid bugs in consuming code

D. Berenyi - M. F. Nagy-Egri

Enter CTest

Enable testing functionality
enable_testing ()

add_executable (UnitTestl src/testl.cpp)
target_link_libraries (UnitTestl LINK_PUBLIC Phys)

Add unit test that reads an input file, processes it and validates against
a file of known correct results
add_test (NAME ,Vector operations”

COMMAND UnitTestl --input detector.dat --validate result.dat)

D. Berenyi - M. F. Nagy-Egri

CTest output inﬁ’[f{

PS C:\Users\Matty\Build\Research\NMake> ctest
Test project C:/Users/Matty/Build/Research/NMake

Start 1: Vector operations
1/1 Test #1: UnitTest1ccovvvnianna.t. Passed 1.58 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 1.58 sec

« By default checks if the exit code of UnitTest1 is O or not.

« Can be customized to match console or file output to another
file or even a regular expression instead

* The formatting of CTest’s output can also be customized

CPack for cross-platform packaging

 Applications built with CMake can trivially be packaged for
distribution

» Because packaging varies greatly between platforms, requires
duplicated ,,boilerplate”
 Boilerplate is package author, company name, version, icons, contact,

etc.
* 10-20 lines per platform can create
* DEB packages
* RPM packages
 Self-extracting EXE installers

D. Berenyi - M. F. Nagy-Egri

Version Control

The art of roll-back

D. Berényi - M. F. Nagy-Egri

Version Control: Why should you care?

 Short version: the entire world is using it, so should you.

 Long version: even small scale software development is full of
,trial and error”, which is not a linear workflow, but rather
tree-like.

» Updating the working copy of the source tree will result in times when
your application is not functioning (might not even build)

* Manually keeping functioning copies of the code base with feature A,
feature A+B, feature A+C-B, etc. is tedious and you WILL MESS UP

» Back-up is essential, cloud storage helps, but not alone
 Collaborating without version control is very hard

* There is no holy grail, the best kind depends on your workflow

Centrallized Version Control - Locking

D. Berényi - M. F. Nagy-Egri

Centrallized Version Control - Merging

"VEQ B
T T

D. Berényi - M. F. Nagy-Egri

Distributed Version Control - Merging

D. Berényi - M. F. Nagy-Egri

Differences between

ST Centraliized

Hard drive space required for history? None Could be a lot
Who has the latest version? Central ,,master version” Depends on policy
Where is the full history? Central machine Local machine
Work offline? No* Yes
How fast are operations? Network-dependent Blazing, most are local
Branching and merging? Reliable, use with caution Reliable, use often
Learning curve? Relatively simple Relatively hard

D. Berényi - M. F. Nagy-Egri

Chosing the right one

« Examples of VCS
* CVS
 Subversion
» Bazaar
* VSS
* TFVC
* Mercurial
 Git
* Some might suit your needs better than others, but we
recommend one of two:
 Git: very powerful, widespread/mainstream, fairly hard to learn
* Mercurial: very good, widespread, easier to learn

D. Berenyi - M. F. Nagy-Egri

Comparing Mercurial to Git

Mercurial is like James Bond Git is like MacGyver

e Has a screwdriver and a
hammer

 Can solve anything, with
the given time and effort

 When hell breaks loose, he
can assemble some ugly
script that will ultimately
save the day

 Has all those sexy and easy
to use gadgets

 Solves most problems in an
instant

* In the rare cases when none
of the gadgets are useful,
he’s pretty much screwed

D. Berenyi - M. F. Nagy-Egri

Git FTW

* There are too many good tutorials online to provide an in-
depth course in this limited time
 Using Git with Visual Studio 2013
« Learn Git branching

* There is a decent set of IDE support available as well as GUI
and command line auxiliary tools

* Posh-git
e Tortoise Git
e Git Extensions

D. Berenyi - M. F. Nagy-Egri

General Git/Mercurial workflow

* Declare one branch as stable and always functional (master)
» Create branches for features/fixes you want to implement
 When a feature is ready, merge it into master

* This way

 Switching between branches to work on half-baked features is safe
and trivial

* |f your collegue asks you to do something with your app, there is
always a functioning master to switch to

D. Berenyi - M. F. Nagy-Egri

Setting up Git

 Set the default name, e-mail and push method associated with
your commits
git config --global user.name "Gipsz Jakab,,
git config --global user.name gipsz.jakab@wigner.mta.hu

git config --global push.default simple

* Set up SSH authentication to the Wigner Git server
 |[n your $(HOME)/.ssh/config create an entry like
host wigner-git
hostname git.wigner.mta.hu
user gitolite
port 9419
identityfile ~/.ssh/id rsa

* Write an e-mail to admin@wigner.mta.hu with your Public
SSH Key for authetntication

D. Berenyi - M. F. Nagy-Egri

mailto:gipsz.jakab@wigner.mta.hu
mailto:admin@wigner.mta.hu

Start working with Git

 Create a local repository on your dev box
e git init
* The repo is initially empty, at least one commit is required to create
the default master branch

* git commit -a
* Create a repository on a remote machine

* Write an e-mail to admin@wigner.mta.hu with repo name and
access control

» Clone (fetch) the remote content (initially empty)
* git clone wigner-git:reponame
* Do the first commit to create the master branch

D. Berenyi - M. F. Nagy-Egri

mailto:admin@wigner.mta.hu

A simple development cycle

» Create a branch for a given feature
* git branch my-feature

« Change to seeing the new branch (initially identical to master)
* git checkout my-feature

» Create/delete/modify files, folders as needed

» Occasionally commit your work to the local repo
e git commit -A

 When the feature is done and tested, merge it into master
e git checkout master
* git pull master
* git merge my-feature

* Push your work to the remote repository
e git push

D. Berenyi - M. F. Nagy-Egri

Help?

* Whenever in doubt
e git branch
* git status
* http://google.com

« Some good places to start learning
« Channel9
» LearnGitBranching

D. Berényi - M. F. Nagy-Egri

http://google.com/
http://google.com/
http://google.com/
https://channel9.msdn.com/Series/Using-Git-with-Visual-Studio-2013
http://pcottle.github.io/learnGitBranching/

Integrated Development
Environment

The swiss army knife of programming

D. Berenyi - M. F. Nagy-Egri

The lazy programmer

“I will always choose a lazy person to do a difficult job
because a lazy person will find an easy way to do it.”

- Bill Gates, former Microsoft CEO

D. Berenyi - M. F. Nagy-Egri

What is an IDE?

» Text editor

« Compiler

* Build System

* Versioning Control
 Profiler

 Documentation Generator
* Bug tracker
 Collaboration tool

D. Berenyi - M. F. Nagy-Egri

IDE versus toolchain

Integrated Development
Environment Toolchain

* Pro * Con
* End-to-end automation * Distinct tools for everything
« Workflow is natural * Some glitches here and there
 Easy to learn, hard to master Hard to learn, hard to master
e Con * Pro
« Gotta cook with what you got * Choose the best of everything

D. Berenyi - M. F. Nagy-Egri

Visual Studio

pq Visual Studio

* The industry standard IDE

» Used to develop all of Microsoft’s software

» By far the most full feautered IDE

« Exhaustive list of Add-Ins

* |s totally free for small dev teams or non-profit use

Installing Visual Studio ianar

o Visual Studio

 https://www.visualstudio.com/
* Download Community 2015
* Run the installer

* Select development tools you need
e Visual C++
* Visual F#
* Python

* Go and have lunch

https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/

How it looks like

Text editor
usually

dominates the
Ul

IntelliSense

Visual
representation
of the build

system

Debug code
visually

Performance
counters
visualized

Source Control
integrated

File Edit View Project Build

o - B

Debug

Solution Explorer
@ o-sd@ © p=
ition Explorer (Ctrl+€
2] Solution 'GridRipper' (7 projects)
b Ml CMakePredefinedTargets
4 @l Bamples
4 @ STL
4 [%] STL-Example1-GauntDistribution
b IE External Dependencies
8 Headers
=B References
2 Sources

Team Tools Test

Release ~

>0 x

b ++ STL_Examplel_GauntDistribution.cpp

B CMakelLists.txt

b [STL-Example2-HiggsParticle

4 @l Library
4 [%] Gripper
b IfE External Dependencies
4 5] Headers
4 5] STL

b

stlExpansionConstantFactor.hpp

[stlExpansionExtent.hpp
stlExpansionField.hpp
stlExpansionindex.hpp
[stiGauntCoefficient.hpp
stiGauntindex.hpp
stiGauntMatrix.hpp
stiGnuPlotter.hpp
stiLogger.hpp
stiMultipoleDefs.hpp
stiMultipoleTypes.hpp
stIRadialExtent.hpp
stiRadiallndex.hpp
stiRadialVector.hpp
stiRuntime.hpp
stiSphericalExtent.hpp
stiSphericalindexhpp
stiSphericalVector.hpp
nyOption.hpp

FEE

PEEEEEE

G}
ripper_Config.hpp
Gripper_Export.hpp
[® Logger.hpp
MultipoleDefs.hpp
MultipoleTypes.hpp
PDEhpp
[Runtime.hpp

o>

=8 References

5 Sources

B CMakeLists.bt
4 @ Tests

Class View Property... Resource...

Output Find Symbol Results Find Results 1

Ready

v

Team Exp...

x64 -

Analyze Window Help
P Local Windows Debugger ~ Auto - |
MultipoleTypes.hpp stiMultipoleTypes.hpp

[%] STL-Example1-GauntDistribution
Bl#i e <STL_Exam

stiSphericalindexhpp stiSphericalExtent.hpp

(Global Scope)

stiSphericalVector.hpp stiGauntMatrix.hpp

tion.hpp>

Gripper::stl::initialize(

ightedSpherical
ightedGaunt:
SpineightedSpherical: :V

type max_L = 3
ndex_type max_S

in x gaunt(max_L, max_S);
std: :cout

std::cout
std::cout

" << max_L << "\nS_max = " << max_S << "\n";

hted gaunt matrix = " << gaunt.size() << std::endl;
a(max_L, max_S);
b(max_L, max_S);

ndex type{ 3, -3, 1 }) =
ndex_type{ 3, 3, -1}

std::cout <
std::cout <<

::index_type
index_type{

:zendl;
< std::endl;

t leightedGaunt
o end = std h_ ut

std::cout <
std::cout << "

index_type{ @, @, @ }) << std::endl;

<< std::chrono: :duration_cast<std: : chrono: : onds>(end - start).count() <<

"ms®

@® Quick Launch (Ctrl+Q

STL_Example1_GauntDistribution.cpp # X

<< std::endl;

P - & x

Maté Ferenc Nagy-Egri ~ [N

4
sanadoiq

Iy
xogiooy Jaojdig ;A3

suoneIyIoN

gisner
GPU Lab

Developing on Linux

* While Visual Studio pretty much rocks, not everyone is content
with having to work on a Windows desktop

 Using IDEs are somewhat alien to the Linux developer
community
 Usually toolchains are preferred
* While there are good IDEs out there, there is no real competition

* A non-exhaustive list of decent IDEs
* Qt Creator
* Code::Blocks
 Eclipse
« KDevelop

D. Berenyi - M. F. Nagy-Egri

Qt Creator

Code less.
Create more.
Deploy everywhere.

» Widespread IDE for cross-platform development

» Used to develop most Qt applications

* Easy to install

« Easy to learn

* |s totally free for developers of open-source software

D. Berenyi - M. F. Nagy-Egri

Installing Qt Creator

* Ubuntu
 sudo apt-get install qtcreator

* OpenSUSE

 zypper install qt-creator

* Scientific Linux
* Yum install gt-creator

D. Berenyi - M. F. Nagy-Egri

How it looks like

* Text editor usual
ominates the U

* Code completion

* Visual
representation o
the build system

* Debug code visually

 Create portable
projects

Debug

N
Projects

L]

Analyze
Fo)

Help

,:“4\
- c”\
7“0‘
,c’\
,c‘)\

5

v e

~'m vme.pri
>[5 Headers
v~ Sources
-E5 evolver
5 hamiltonian
-B5 inih
T*E jastrow
>~ 5 minimizer
-5 montecarlo
B onerun
B orbital
-5 slater
>-E5 walker
>~ 5 wavefunction

blocker.cpp
config.cpp
densityplotter.cpp
hermite.cpp
main.cpp
mainapplication.cpp
matrix.cpp
random.cpp

v~ Other files

. config.ini
i~ scripts_mytasks.pl
. todo.txt

m vme.pri

@ B+

D<>

| Bl O- Type tolocate (Ctrl+k)

Window Help
X €& &

v

v

v

config.cpp - vmc - Qt Creator

config.cpp ~ | <Select Symbol> ~ Line: 1, Col:1

#include "config.h”

#include <stdlib.h>
#include <stdio.h>
#include <iostream>

//#include "inih/cpp/INIReader.h"
#include "inih/ini.h"

#include "wavefunction/waveslater.h"
#include "hamiltonian/hamiltonianideal.h"”
#include "montecarlo/standardmontecarlo.h”

using namespace std;

Config::Config(int myRank, int m_nProcesses) :
m_rank(myRank),
m_n_nProcesses(m_nProcesses),
m_nParticles(2),
m_nDimensions(2),
m_stepLength(1.0),
m_wave(0),
m_hamiltonian(0),
m_monteCarloClass("MonteCarloStandard"),
m_omega(1.0),
m_interactionEnabled(true),
m_idum(-(1 + myRank)*time(NULL) / 100000), // TODO figure out why this must be divided by 1000000
m_diffusionConstant(0.5)

{
}

void Config::loadConfiguration(INIParser* settings) {
m_nParticles = settings->GetDouble("General”, "nParticles”, m_nParticles);
m_nDimensions = settings->GetDouble("General® nDimensions”, m_nDimensions);
m_interactionEnabled = settings->GetBoolean("General”, "interactionEnabled”, m_interactionEnabled);
m_steplLength = settings->GetDouble("General™, "steplLength”, m_steplLength);
m_omega = settings->GetDouble("General™, "omega", m_omega);

// Wave properties
string waveClass = settings->Get("Wave"”,"class"”, "WaveSimple");
std::cout << waveClass << std::endl:
m_wave = WaveFunction::fromlame(waveClass, this);
/7 m_wave = new WaveSlater(this);

cerr << "Unknown wave class '" << wave(lass << "'" << endl;

exit(99):
m_wave->JoadConfiguration(settings):

// Hamiltonian
string hamiltonianClass = settings->Get("Hamiltonian","
std::cout << hamiltonianClass << std::endl;
m_hamiltonian = Hamiltonian::fromName(hamiltonianClass, this):
/7 m_hamiltonian = new HamiltonianIdeal(this):
if(m_hamiltonian == 0) {
cerr << "Unknown hamiltonian class

class”, "HamiltonianSimple");

<< _hamiltonianClass << "'" << endl;

.l Issues ! Search Resull:sApplication Output

Compile Output General Messages Version Control

D. Berenyi - M. F. Nagy-Egri

Quick tour of Visual Studio

D. Berényi - M. F. Nagy-Egri

