Erősen korrelált kvantumos rendszerek GPU alapú szimulációja
Legeza Örs (2023.11.01 - 2024.04.30)
Wigner Fizikai Kutatóközpont
Publikációk:
[1] Parallel implementation of the Density Matrix Renormalization Group method achieving a quarter petaFLOPS performance on a single DGX-H100 GPU node
[2] Two-dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method
[3] Boosting the effective performance of massively parallel tensor network state algorithms on hybrid CPU-GPU based architectures via non-Abelian symmetries
[4] Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU Based Architectures
Kivonat: Az olyan kvantumos rendszerek numerikus szimulációja, melyekben az atomi spinek vagy mozgékony elektronok közötti kölcsönhatás erős és nem lehet leírni ún. perturbációs módszerekkel a modern fizika középpontjában állnak. Ez azonban igen nagy kihívást jelent mert a számítógépes erőforrás általánosságban exponenciálisan skálázódik a rendszer méretével. Olyan algoritmusok kidolgozása, melyeknél ez polinomiális alakra hozható napjaink egyik legintenzívebben kutatott tudományterületének számít.
A sűrűségmátrix renormálási csoport (DMRG) algoritmus éppen egy ilyen módszer, aminek további nagy előnye, hogy a vonatkozó tenzor algebra a megmaradó kvantumszámok tükrében akár egymástól több millió független részfeladatra bontható. Mindez ideális környezetet biztosít MPI és GPU alapú masszív párhuzamosításhoz. A 2021-2022-es év során hibrid CPU és többszörös GPUval gyorsított alkalmazásainkkal már számos kvantumos rendszerre végeztünk szimulációkat, mely eredméneyinkből két kéziart is elérhető az arXiv-on:
[1] Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU Based Architectures, Andor Menczer, Örs Legeza, arXiv:2305.05581 (2023)
[2] Boosting the effective performance of massively parallel tensor network state algorithms on hybrid CPU-GPU based architectures via non-Abelian symmetries, Andor Menczer, Örs Legeza, arXiv:2309.16724 (2023)
Az [1] publikációban a GPU Labor a köszönetnyilvánításban is szerepel mert az eredmények egy része a projekt első fázisa alatt készült. A jelen projektben (második fázis) ezeket kívánjuk tovább tesztelni és a hatékonysági tesztek alapján tovább optimalizálni az A100-as GPU infrastukturát használva. A tesztek eredményei alapján a [2] publikáció bizonyos adatpontjait tervezzük bővíteni.