Tolnai Gábor, Légrády Dávid (2022.08.01 - 2022.12.31)
Budapesti Műszaki és Gazdaságtudományi Egyetem

Kivonat: A GUARDYAN (GPU Assisted Reactor Dynamic Analysis) a BME Nukleáris Technikai Intézetben fejlesztett GPU alapú reaktordinamikai célú Monte-Carlo kód, amely közvetlen módon kezeli a nukleáris reaktorokban lejátszódó időfüggő folyamatokat. Szemben a bevett reaktordinamikai számítási módszerekkel, a GUARDYAN alkalmazásának előnye, hogy minimalizálja a fizikai folyamatok modellezésénél alkalmazott közelítéseket, a pontosságnak azonban ára van, ez a jelentős futási idő, egy valós másodperc szimulációja 6-24 óra számítási időt jelent a reaktor geometria komplexitásának függvényében.

A projekt célja a kód számítási hatékonyságának növelése szóráscsökkentési eljárások segítségével. Ez az értékesség (adjungált) függvény alapján történő kölcsönhatási törvények torzítási sémájának kidolgozását jelenti az adjungált alapú Woodcock-módszer és a fürkészminták (Sampling Importance Resampling) szögsorsolási technika segítségével.

A szóráscsökkentési eljáráshoz szükséges egy kellően pontos adjungált függvény ismerete, melyet a GUARDYAN kóddal számítunk az adott geometriai elrendezésre. A megfelelő felbontású és pontosságú függvény előállításához hosszú időre van szükség, de egy kritikus állapotú reaktorhoz elégséges egyszer legenerálni és a különböző tranziens szcenáriók esetén ugyanaz az adjungált függvény felhasználható. A szóráscsökkentési módszer használhatóságának szemléltetéséhez több különböző komplexitású elrendezés esetén szeretnénk értékesség függvényt generálni, mely jelentős GPU kapacitást igényel.

Margóczi Márk, Légrády Dávid (2022.08.01 - 2022.12.31)
Budapesti Műszaki és Gazdaságtudományi Egyetem

Kivonat: A nukleáris tudományoknak új kutatási területe a dinamikus Monte-Carlo módszerrel való neutrontranszport számítások. A dinamikus Monte-Carlo számítás nem csak a neutronkinetika előrejelzésére használható fel, hanem összekapcsolható termohidraulikai rendszerkódokkal, amelyek összetettebb dinamikus szimulációkat tesznek lehetővé. Ezen csatolt számítási módszer felveti a kérdését a stabilitás és konvergencia vizsgálatának. A szimulációk extrém kapacitás igényei és sztochasztikus tulajdonságai miatt a stabilitás és a konvergencia elméletek teszteléséhez nagy teljesítményű hardverek szükségeltetnek.

A GUARDYAN (GPU Assisted Reactor Dynamic Analysis) egy GPU-n (Graphics Processing Unit) futó dinamikus Monte Carlo alapú neutrontranszport program. Önmagában a GUARDYAN képes számolni a neutronkinetikát, viszont az összetettebb reaktorfizikai számításokhoz szükségesé válik a termohidraulika visszacsatolása. Utóbbi megvalósításához a SUBCHANFLOW szubcsatorna kód GUARDYAN-hoz való csatolásával valósult meg. A stabilitás és konvergencia vizsgálat legegyszerűbb eszköze a sztochasztikus kalkulus, melynek keretén belül a neutronkinetika egy sztochasztikus differenciálegyenlettel közelíthető. Ha ennek az egyenletnek a szórás járulék tagját Monte-Carlo feltevésekkel definiáljuk, akkor a sztochasztikus differenciálegyenlet a dinamikus Monte-Carlo módszerű szimulációt közelíti. Amennyiben a probléma megfelelően egyszerű, a rektor neutronkinetikája és termohidraulikája analitikus képletekkel levezethető. Ezek az egyenletek összehasonlításra várnak a gyakorlati problémák megoldásaival, amelyhez nagy számú futtatás szükséges annak érdekében, hogy a módszernek megfelelő statisztikai bizonytalanságú várható értéket, szórást és varianciát számolhassunk.

A futtatások tudományos folyóiratcikkek publikálását segítik, aminek témája a sztochasztikus differenciálegyenletek és időfüggő Monte-Carlo alapú neutrontranszport kapcsolatának feltérképezése és annak vizsgálata, hogy a sztochasztikus neutronkinetika szórása miképpen terjed át a termohidraulika szórására.

Gergácz Mira Anna, Keresztúri Ákos (2022.08.31-12.31)

Kivonat: A Mars kutatásának egyik fontos és aktuális kérdése, hogy a bolygón a jelenlegi viszonyok között előfordulhat-e cseppfolyós halmazállapotú víz. Az általános szárazság, alacsony hőmérséklet és kis légnyomás nem kedvez ennek, ugyanakkor esetleg sóoldatok formájában, vagy mikroszopikus méretskálán talán nem lehetetlen ez. Célunk olyan jégfoltok keresése HiRISE felvételek alapján a Mars felszínén, amelyek viszonylag „meleg” környezetben is megmaradtak, és az sem kizárt, hogy ideális esetben akár cseppfolyóssá is válhatnak. Mivel a bolygó légkörének és felszíni törmeléktakarójának kicsi a hővezető képessége, ezért a tavasszal zsugorodó pólussapka visszahúzódása után is maradhatnak kisebb jégfoltok a felszínen ott, ahol gyenge megvilágítást kaptak, például lejtőszög vagy árnyékoló felszínformák miatt. Az ilyen területeket is eléri végül a napfény, ilyenkor a jég gyorsan melegedhet, és esetleg a cseppfolyós fázis is megjelenik.

A kiválasztási paramétereknek megfelelő 1400 optikai felvételből 110 került elemzésre, melyek közül 37-en mutatkozott jég folt. Ezeket a kisebb jégfoltokat 140°-tól 200° solar longitude érték között a déli tavasz és nyár idején a -40° és -60° földrajzi szélesség között találtuk. A foltok mérete 1,5-300 méter között mozog és a pólussapka elhaladása után még akár 19-133 marsi napig is megmaradnak. A megfelelő területeken uralkodó viszonyokat ezután a The Mars Climate Database (MCD) adatbázis segítségével szimuláltuk azt elemezve, hogy mekkora lehetett a hőmérséklet a kis jégfoltokat mutató kép készültekor, valamint elméleti megközelítés alapján mennyi víz- és szén-dioxid jég boríthatta a felszínt 22 jégfoltosnak azonosított területen. A modellekből ítélve az átlagos déli hőmérséklet nem éri el a víz olvadáspontját, a 273 K fokot, így a cseppfolyós víz kialakulása meglehetősen valószínűtlen. Azonban egy interfaciális réteg (pár nanométeres folyékony vízréteg) kialakulása még nem kizárható.

Menczer Andor (ELTE), Vízkeleti Áron (Wigner FK), Máté Mihály (Wigner FK) és Legeza Örs (Wigner FK) - (2022.09.01 - 2022.11.30)

Kivonat: Az olyan kvantumos rendszerek numerikus szimulációja, melyekben az atomi spinek vagy mozgékony elektronok közötti kölcsönhatás erős és nem lehet leírni ún. perturbációs módszerekkel a modern fizika középpontjában állnak. Ez azonban igen nagy kihívást jelent mert a számítógépes erőforrás általánosságban exponenciálisan skálázódik a rendszer méretével. Olyan algoritmusok fejlesztése, melyeknél ez polinomiális alakra hozható napjaink egyik legintenzívebben kutatott tudományterületének számít.

A sűrűségmátrix renormálási csoport (DMRG) algoritmus éppen egy ilyen módszer, aminek további nagy előnye, hogy a vonatkozó tenzor algebra a megmaradó kvantumszámok tükrében akár egymástól több millió független részfeladatra bontható. Mindez ideális környezetet biztosít MPI és GPU alapú masszív párhuzamosításhoz. Az Erősen korrelált rendszerek „Lendület” kutatócsoportunk e feladatokkal több mint két évtizede foglalkozik és az utóbbi időben elkészült egy új GPU alapú kernelünk Menczer Andor (ELTE mesterszakos diákunk) munkájának köszönhetően. A jelen projektben ezt kívánjuk tesztelni és a hatékonysági tesztek alapján tovább optimalizálni, illetve alkalmazni kétdimenziós elektronrendszerekre, erősen korrelált molekuláris klaszterekre és atommagok szimulációjára.

A projektben Menczer Andor (ELTE), Vízkeleti Áron (WignerFK), Máté Mihály (Wigner FK) és Legeza Örs (Wigner FK) vesznek részt. A forráskód Matlabban készült, a fordított stand-alon kód előállítása pedig a Matlab Compiler-rel történt. A kód tesztelését, finomhangolását és nagy rendszerekre való alkalmazását több lépcsőben kívánjuk elvégezni. A GPU kernel a Matlab Paralelization Toolbox, illetve a CUDA Coderrel készült. Első körben egy három hónapos időintervallumra kérünk számítási lehetőséget NVIDIA kártyákat elérő nodeok (cluster 1,2,3,4) valamelyikére.

Az eredményeket rangos nemzetközi folyóiratokban tervezzük publikálni, mint például korábbi munkáinkat is a vonatkozó területeken [1,2]

[1] The density matrix renormalization group algorithm on kilo-processor architectures: implementation and trade-offs, Csaba Nemes, Gergely Barcza, Zoltán Nagy, Örs Legeza, Péter Szolgay, Computer Physics Communications Volume 185, Issue 6, June 2014, Pages 1570-1581

[2] Massively parallel quantum chemical density matrix renormalization group method, Jiří Brabec, Jan Brandejs, Karol Kowalski, Sotiris Xantheas, Örs Legeza, Libor Veis, Computational Chemistry, https://doi.org/10.1002/jcc.26476

Pocsai Mihály András, Barna Imre, Bíró Gábor, Barnaföldi Gergely Gábor (2021.10.01 - 2022.08.31)
Wigner Fizikai Kutató Központ

Kivonat: A plazmás részecskegyorsítók koncepciója, hogy a részecskéket nem vákuumban, elektromágneses térrel gyorsítják, kollimálják és tartják a megfelelő pályán, hanem azokat egy ún. vezérlőnyaláb által keltett plazmahullámok segítségével gyorsítják fel [1]. A vezérlőnyaláb lehet egy töltött részecskékből álló nyaláb, vagy egy rövid, nagy intenzitású lézerimpulzus. A felgyorsítani kívánt részecskéket általában külső forrásból injektálják a plazmába, de plazmás elektrongyorsító esetén, amennyiben a plazmahullámokat egy lézerimpulzus kelti, és annak csúcsintenzitása elegendően nagy, úgy a maguk a plazmaelektronok is becsapdázódhatnak úgy, hogy a létrejövő plazmahullámok őket gyorsítsák. Az itt felvázolt folyamatban tehát a gyorsítandó nyaláboknak vezérlő nyalábok az általuk keltett plazmahullámok közvetítésével adják át energiájukat. A CERN–AWAKE kísérletben rövid protonnyalábok vonulatával kívánják létrehozni az elektronokat gyorsító plazmahullámokat [2]. A vezérlő protonnyalábok vonulatát a gyorsítóközegként szolgáló plazma hozza létre az SPS protonnyalábjából az önmodulációs instabilitás révén. A kísérlet működéséhez kulcsfontosságú, hogy a plazma ultrahomogén legyen, illetőleg a megfelelő részein pontosan az előírtak szerint változzék a sűrűsége. A plazmát, alacsony ionizációs potenciálja miatt, rubídiumból állítják elő egy 120 fs hosszú, intenzív, infravörös lézerimpulzus segítségével. Ez teszi indokolttá a rubídium fotoinizációs folyamatainak elméleti tanulmányozását.

A szóban forgó folyamatokat korábban is kvantummechanikai számításokon keresztül tanulmányoztuk [3]. Az alkalmazott módszer lényege, hogy az időfüggő Schrödinger-egyenlet megoldását a szabad rubídium atom Hamilton operátora sajátfüggvényeinek bázisán fejtjük ki, ahol a kifejtési együtthatók az időtől függenek. Ezt az Ansatzot a Schrödinger-egyenletbe visszahelyettesítve, egy közönséges, lineáris differenciálegyenletrendszert kapunk az időfüggő kifejtési együtthatókra, amelyek rendre az atom kötött vagy kontinuum állapotainak betöltöttségi amplitúdóit adják meg. A lézerfénnyel való kölcsönhatás utáni, végállapoti hullámfüggfényből meghatározható a teljes fotoionizációs valószínűség, a fotoelektronok energiaspektruma, szögeloszlása, valamint energia és polárszög szerinti eloszlása.

Referenciák:
[1] T. Tajima, J.M. Dawson: „Laser electron accelerator". Phys. Rev. Lett 43, 267–270 (1979).
[2] C. Petit-Jean-Genaz, G. Arduini, P. Michel, V. R. W. Schaa, (eds.), Proceedings, 5th International Particle Accelerator Conference (IPAC2014): Dresden, Germany, June 15–20, 2014, JACoW Conferences (CERN, Geneva, Switzerland, 2014).
[3] M.A. Pocsai, I.F. Barna and K. Tőkési: „Photoionisation of Rubidium in strong laser fields". Eur. Phys. J. D 73, 74 (2019).

István Papp, Larissa Bravina, Mária Csete, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó (2022.07.01 - 2022.12.31)

Kivonat: A fosszilis tüzelőanyagoktól való függésünk az elmúlt évszázadban egyre inkább nőtt, és ma már alternatı́v energiaforrásokra lesz szükségünk. A lézeres fúzió ı́géretes lehetőség a tiszta és biztonságos energiatermeléshez. Az eddigi legsikeresebb konfiguráció indirekt begyújtást használ, a céltárgy közvetetten gyullad be a külső aranyhengerből származó Röntgen sugárzástól. Miután a céltárgy összenyomódik, Rayleigh-Taylor instabilitások alakulnak ki.

A Wigner Fizikai Kutatóközpontban működő kutatócsoporok egyike a Nanoplazmonikus Lézeres Fúzió Nemzeti Kutatólaboratórium (NAPLIFE) célja a fúzió esélyének javı́tása nagy teljesı́tményű rövid lézerimpulzusokkal és céltárgygyártással, ötvözve a nehézion-ütközések és az optika legújabb felfedezéseit [1]. Célunk a rezonáns arany nanoantennák felületi plazmonikus hatásának szimulációs vizsgálata különböző monomer közegekben. A monomer csak kísérleti célokat szolgál, bizonyítani a nanorudak hatékonyságát. A plazmonhatás létfontosságú a projekt számára, mivel ezekkel tudjuk majd befolyásolni a céltárgy abszorpciós tulajdonságait. Tanulmányozzuk a különböző monomer rétegek különböző arany nanorészecske sűrűséggel való szennyezésének viselkedését, figyelembevéve a plazmonok élettartamát egy kinetikus modell segítségével [2]. Az eredmények elengedhetetlenek lesznek jövőbeli kísérletek tervezéséhez az ELI-ALPS Szeged lézeres létesítményében.

[1] L.P Csernai, N. Kroo and I. Papp, Radiation dominated implosion with nanoplasmonics, Laser and Particle Beams, Volume 36, Issue 2, June 2018 , pp. 171-178

[2] I. Papp, L. Bravina, M. Csete, et al., Kinetic model evaluation of the resilience of plasmonic nanoantennas for laser-induced fusion, PRX Energy, Vol. 1, Iss. 2 (2022)

Csabai István, Gellért Ákos, Pál Balázs (2022.01.01 - 2022.08.31)
ELTE Komplex Rendszerek Fizikája Tanszék

Kivonat: A COVID-19 járvány az egész emberiség számára rendkívüli helyzetet teremtett, több millió emberéletet követelt és jelentős gazdasági visszaesést okozott. Ugyanakkor a nemzetközi kutatói közösség rövid időn belül minden eddiginél nagyságrendekkel nagyobb adathalmazt hozott létre, mely hozzájárulhat a járvány kialakulásának és dinamikájának megértéséhez, annak megfékezéséhez és hasonló pandémiák megakadályozásához. A GISAID és a COVID-19 Data Portal adatbázisokban több millió teljes SARS-CoV-2 genom található meg. A genetikai szekvenciákat a modern berendezéseknek köszönhetően viszonylag könnyen és gyorsan le lehet olvasni de nagyon nehéz pusztán a szekvenciák és a bennük gyülemlő mutációk alapján megmondani mennyire gyorsan terjedő, mennyire veszélyes az adott variáns. A genetikai információ fehérjékbe íródik át, majd a fehérjék térszerkezete, töltéseloszlása, kölcsönhatása a gazdaszervezet fehérjéivel határozzák meg a virus működését, a fenotípust. Összefoglalva, a genotípus-fenotípus problémakör a genetikai információk alapján a virus viselkedésének becslése.

Az elmúlt évben a rohamos ütemben fejloődő mesterséges intelligencia megközelítéssel sikerült egy olyan mérföldkövet elérni, ami jelentősen segítheti a genotípus-fenotípus kutatásokat. Az Alphafold2 módszer segítségével elfogadható idő alatt, kellő pontossággal meghatározható olyan nagy fehérjék térszerkezete. A gépi tanulás alapú Alphafold2 módszer jelentős számítási, elsősorban GPU kapacitást igényel.

Egy H2020 projekt keretében együttműködünk az EMBL-EBI szervezettel a SARS-CoV-2 genetikai archívum fejlesztésén. Célunk ennek kiegészítése minél több variáns fehérjéinek 3D szerkezetével és a szerkezetek segítségével a genotípus-fenotípus kérdés előremozdítása.

Sudár Ákos, Varga-Kőfaragó Mónika, Barnaföldi Gergely Gábor és Légrády Dávid (2021.07.01 - 2022.08.31)
Wigner Fizikai Kutatóközpont és BME Nukleáris Technikai Intézet

Kivonat: A proton komputertomográfia (pCT) fejlesztésének célja a páciens relatív fékezési energia ( relative stopping power, RSP) eloszlásának pontos meghatározása, ezzel lehetővé téve a protonterápia során alkalmazott biztonsági zónák méretének csökkentését. A pCT képalkotás során a pácienst protonokkal világítják át, amelyek iránya és energiája a páciens előtt megválasztható, a páciens mögött mérhető, ami alapján meghatározható a protonok legvalószínűbb pályája (maximum likely path, MLP) és a páciensben leadott energiájuk. A mérési adatokból a térbeli kép rekonstruálása az order suppressed expectation maximalization (OSEM) módszer alkalmazásával történik, ami a maximum likelihood expectation maximalization (ML-EM) módszer egy gyorsított változata. A jelenlegi projekt célja egy párhuzamosított és részben grafikus kártyán futó program kifejlesztése a képrekonstrukciós idő minimalizálása érdekében. A szoftver későbbiekben a Bergen pCT Kollaboráció által fejlesztett detektorrendszer mérési adatainak képrekonstrukciója során kerül felhasználásra, ezzel hozzájárulva a kutatócsoport munkájához és későbbi publikációihoz.

Ernő Dávid, Dávid El-Saig, Zoltán Lehóczky és Gergely Gábor Barnaföldi (2021.12.01 - 2022.08.31)
Wigner RCP és Lombiq Technologies Ltd. együttműködés

Kivonat: A Lombiq Technologies Hastlayer terméke lehetővé teszi a .NET platform szoftverfejlesztőinek, hogy FPGA-kat gyorsítókártyákként használjanak. Standard .NET programokat tud ekvivalens hadverimplementációvá alakítani, és ezzel az erre alkalmas algoritmusokat automatikusan felgyorsítani és az energiafelhasználásukat csökkenteni. A fejlesztők továbbra is szokványos .NET programokat írnak, nincs szükség hardvertervezői tudásra.

A Hastlayerhez minden támogatott FPGA gyorsítókártya esetében el kell készíteni a futtatást lehetővé tevő firmware és szoftver komponenseket. A Wigner FK-val közösen korábban már elkészült több platform támogatása is (Microsoft Catapult platform és Xilinx Alveo FPGA kártya család). A most következő szakasz célja a Hastlayer futását lehetővé tenni beágyazott rendszereken is, mint pl. amilyenek a Xilinx Zynq FPGA család tagjaival szerelt FPGA kártyák.

A Wigner feladata kifejleszteni a Hastlayer által generált hardverkomponensek futtatásához szükséges firmware keretrendszert Xilinx Zynq FPGA-ra, illetve az FPGA-ba lévő ARM processzorokon futó Linux operációs rendszer szükséges szintű módosításait elvégezni.

Bíró Gábor, Papp Gábor, Barnaföldi Gergely Gábor, Majoros Balázs (2021. 06.01 – 2022. 08.31)
Wigner Fizikai Kutatóközpont és Eötvös Loránd Tudományegyetem

Kivonat: A világ legnagyobb részecskegyorsítóiban, mint amilyen a Nagy Hadronütköztető a CERN-ben vagy a Relativisztikus Nehézion-ütköztető a BNL-ben, több százezer kölcsönhatás történhet minden egyes másodpercben. A nagyenergiás nehézion-ütközések egy speciális részhalmazát képezik ezen eseményeknek, melyeknek célja az Univerzum keletkezésekor jelen lévő anyagnak, a kvark-gluon plazma tulajdonságainak a vizsgálata. A kísérletek mellett mindig szükség van numerikus számolásokra, például Monte Carlo eseménygenerátorokra. Ezen számolások azonban rendkívül számításigényesek: még egy modern CPU-val rendelkező gépnek is, a kísérleti adatok mindössze néhány másodpercének a szimulációja több órányi (akár több napnyi) gépidőt is igényelhet. Az LHC-nál történő fejlesztéseknek köszönhetően a jövőben ez még nagyobb kihívást jelent majd. A HIJING++ keretrendszer a nagyenergiás nehézion-fizikai Monte Carlo eseménygenerátorok következő generációja. A legújabb elméleti modellek és a beépített CPU párhuzamosítás segítségével képes lesz kihasználni a modern többmagos architektúrákat, ezáltal lecsökkenti a szükséges gépidőt és egyéb járulékos költségeket.

Anna Horváth, Bámer Balázs, Barnaföldi Gergely Gábor és Légrády Dávid (2022.01.01 - 2022.07.30)
Wigner Fizikai Kutatóközpont

Kivonat: A nemlineáris optikai közegekben a lehetséges optikai utakat vizsgáljuk meg hagyományos számolásokban, valamint ezek helyreállítását a modern gépi tanulás módszereivel.

Forgács-Dajka Emese, Kővári Emese, Kovács Tamás (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: A középmozgás rezonanciák fontos szerepet játszanak a Naprendszerbeli égitestek dinamikájának formálásában. Általában egy nagybolygó és egy kis égitest között lépnek fel, pl. a Hilda család kisbolygói, amelyek 3:2-es, míg a trójai kisbolygók 1:1-es középmozgás rezonanciában vannak a Jupiterrel. Forgács-Dajka, Sándor & Érdi (2018) a rezonanciváltozó geometriai jelentése alapján egy hatékony módszert dolgozott ki és mutatott be, mely segítségével minden előzetes feltevés nélkül könnyen megtalálhatóak a középmozgás rezonanciák. A FAIR módszer hatékonysága könnyen bemutatható már ismert kisbolygó-családok középmozgás rezonanciában lévő tagjai esetében, amelyek valamely nagybolygóval állnak középmozgás rezonanciában. A Neptunuszon túli vidék jelentős számú kisbolygót tartalmaz (TNO-k), ahol változatos orbitális pályákkal találkozhatunk, így ez a terület kimeríthetetlen tárházát nyújtja a különböző dinamikai problémáknak. Találhatunk itt nagyon elnyúlt pályákat, vagy éppen nagyon ferdéket is, melyek magyarázata bolygóevolúciós szempontból is igen fontos lehet. Kutatásunk első részében a FAIR módszert alkalmazva vizsgáljuk a dinamikai szempontból lényeges középmozgás rezonanciákat a Neptunusz óriásbolygóval. Terveink között egy online adatbázis közlése is szerepel, ahol az egyedi TNO-k dinamikai és fizikai tulajdonságai is feltüntetésre kerülnek.

Kővári Emese, Kovács Tamás, Forgács-Dajka Emese (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: A Neptunusz pályáján túli tartomány megoldásra váró dinamikai problémák kimeríthetetlen forrása. Célunk a transzneptun objektumok (TNO-k) egy nagyszabású felmérésének elkészítése dinamikai térképeken keresztül. Kutatásunk első része a transzneptun tér középmozgás-rezonanciáinak dinamikai szerepére koncentrál, a megértés eszközei klasszikus káoszindikátorokat bemutató dinamikai térképek. A kutatás második részének fókuszában a TNO-k kaotikus diffúziójának és stabilitási idejének számszerűsítése áll. A fázistérbeli kaotikus diffúzió kulcsfontosságú mennyiség adott rendszer hosszútávú dinamikájának megértésében. A kutatás első részében kiválasztott 4125 TNO esetében a diffúziós együtthatók becslése a Shannon-entrópia alkalmazásán alapul. Utóbbi mennyiség lehetővé teszi egyrészt a fázistérbeli instabil régiók kiterjedésének számszerűsítését (így mint káoszindikátor használható), másrészt a diffúziós együtthatók közvetlen származtatásának is hatékony eszköze. A karakterisztikus stabilitási idők ezt követően - normál diffúziót feltételezve - a diffúziós együtthatók reciprokaként becsülhetőek. A diffúziónak, valamint a stabilitási időknek a nagyszámú TNO-ra való meghatározása reményeink szerint a transzneptun tér szerkezetének általános feltérképezését is lehetővé teszi, dinamikai osztályok meghatározásával vagy a szakirodalomban fellelhetőek pontosításával együtt.

Kovács Tamás, Kővári Emese, Forgács-Dajka Emese (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: Napjaink bolygókutatásában a hosszú idejű stabilitásvizsgálat alapvető jelentőségű. Mindamellett, hogy a megfigyelési adatok egyre nagyobb mennyiségben állnak rendelkezésünkre és ezáltal egyre pontosabb bolygópályákat szolgáltatnak, a klasszikus stabilitásvizsgálat elengedhetetlen kelléke a gravitációs N-test probléma megoldása és a fázistrajektóriák elemzése. Egy olyan módszert alkalmazunk a bolygórendszerek stabilitásvizsgálatára, melynek alapja a megfigyelt mennyiségekből származtatott általánosított Rényi-entrópia. Jelen munkában a megfigyelt mennyiség, az exobolygó kutatásban jól alkalmazható, központi égitest radiális sebessége. Ebből fejtjük vissza a fázistérbeli viselkedést, majd a Poincaré-féle visszatérési idők segítségével határozzuk meg egy adott mozgás entrópiáját, komplexitását. Nagy teljesítményű számítógépek segítségével lehetőségünk nyílik a fázistér rekonstrukciójára, valamint a hosszú idősorokból származó lineáris algebrai feladatok elvégzésére. Eredményeink azt mutatják, hogy az entrópia-alapú megközelítés jó egyezést mutat a klasszikus káoszdetektálási módszerekkel.

Dr. Papp Gábor (ELTE), Bíró Gábor (Wigner FK), Feiyi Liu (ELTE), Xiangna Chen (CCNU, Wuhan), Dudás Bence (ELTE), Misur Patricia (ELTE) (2021.06.01-08.31)

Kivonat: A műtéttel nem hozzáférhető lokalizált rákos daganatok elpusztításának egyik hatékony módja a protonnal (vagy annál nehezebb He, illetve C ionokkal) történő sugárkezelés. Az eljárás során általában egy kezelés elég a hagyományos sugárterápiával szemben, mivel a proton igen jól fókuszálhatóan, kb. mm-es pontossággal tudnak roncsolni (a nehezebb ionok még nagyobb pontossággal). Azonban, mivel a proton és a gamma sugarak behatolási profilja különböző, a CT-s tomográfia nem kalibrált a proton nyalábra, és nem teszi lehetővé a készülék pontos beállítását, aminek következtében a gyakorlatban messze az elméleti határnál pontatlanabb a kezelés. A nagyobb pontosságot proton tomográfiával lehet elérni, amihez a kezeléshez használt protonnyalábot használjuk, nagyobb energián. A testen áthaladó részecskék detektálására egy a CERN technológián alapuló ALPIDE chipeken alapuló detektorrendszert fejlesztettünk ki a nemzetközi pCT együttműködés (https://wiki.uib.no/pct/index.php/Main_Page) keretében. Mivel a jelek feldolgozása időigényes folyamat, ezért azt idegháló alkalmazásával szeretnénk gyorsítani: a cél egy olyan ideghálózat kifejlesztése és betanítása, mely a detektorjelek alapján képes megmondani a testből kilépő protonok irányát és energiáját. Több szögben ezeket megmérve előállítható a vizsgált terület tomográfiás képe, és kiszámolhatóak a kezeléshez szükséges adatok.

Emese Forgács-Dajka*, István Balla** (2021.05.01-2021.11.31)

* Eötvös Lorán Tudományegyetem, Csillagászati tanszék
** Solar Physics and Space Plasma Research Centre (SP2RC), Department of Applied Mathematics, The University of Sheffield

Kivonat: Munkánk során a részlegesen ionizált plazmában fellépő - mint pl. a a Nap légkörében megfigyelhető protuberanciák esete -, a környező mágneses térre ferde irányban terjedő lökéshullámok jellegét és tulajdonságait vizsgáljuk. Elsősorban a megfigyelésekkel is alátámasztott lökéshullámok elemzését szeretnénk elvégezni, így eredményeink magyarázatként szolgálhatnak a protuberanciákban megfigyelt fényes foltok terjedésére is (Lin és mktsai, 2012).

Az összenyomható, egyfolyadékos magnetohidrodinamikai (MHD) egyenletek megfelelő skálázási eljárásokkal redukálhatók a jól ismert Burgers-egyenletre, melynek együtthatói a lökéshullám terjedési szögétől, a plazma β-tól és a plazma ionizációs fokától függenek. Modellünk jól alkalmazható mind a lassú, mind a gyors magnetoakusztikus lökéshullámok vizsgálata során. A lökésfront esetén a standard ugrási feltételeket használva (gyenge szórást feltételezve) meghatározhatók a termodinamikai mennyiségek ugrása is, melyek már összehasonlíthatóak a megfigyelésekből származó adatokkal.

A Cole-Hopf transzformáció segítségével oldjuk meg a kapott egyenletet, amely tulajdonképpen egyenértékű egy diffuziós egyenlet kezdetérték problémával. A megoldás során megvizsgáljuk, hogy mennyi időre van szükség ahhoz, hogy a kezdetben Gauss-féle hullámprofil lökéshullámmá feljődjön, azaz a hullámfront vastagsága az ionok szabad úthosszának nagyságrendjébe essen.