Anna Horváth, Bámer Balázs, Barnaföldi Gergely Gábor és Légrády Dávid (2022.01.01 - 2022.07.30)
Wigner Fizikai Kutatóközpont

Kivonat: A nemlineáris optikai közegekben a lehetséges optikai utakat vizsgáljuk meg hagyományos számolásokban, valamint ezek helyreállítását a modern gépi tanulás módszereivel.

Pocsai Mihály András, Barna Imre, Bíró Gábor, Barnaföldi Gergely Gábor (2021.10.01 - 2022.01.31)
Wigner Fizikai Kutató Központ

Kivonat: A plazmás részecskegyorsítók koncepciója, hogy a részecskéket nem vákuumban, elektromágneses térrel gyorsítják, kollimálják és tartják a megfelelő pályán, hanem azokat egy ún. vezérlőnyaláb által keltett plazmahullámok segítségével gyorsítják fel [1]. A vezérlőnyaláb lehet egy töltött részecskékből álló nyaláb, vagy egy rövid, nagy intenzitású lézerimpulzus. A felgyorsítani kívánt részecskéket általában külső forrásból injektálják a plazmába, de plazmás elektrongyorsító esetén, amennyiben a plazmahullámokat egy lézerimpulzus kelti, és annak csúcsintenzitása elegendően nagy, úgy a maguk a plazmaelektronok is becsapdázódhatnak úgy, hogy a létrejövő plazmahullámok őket gyorsítsák. Az itt felvázolt folyamatban tehát a gyorsítandó nyaláboknak vezérlő n...

Read More...

Forgács-Dajka Emese, Kővári Emese, Kovács Tamás (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: A középmozgás rezonanciák fontos szerepet játszanak a Naprendszerbeli égitestek dinamikájának formálásában. Általában egy nagybolygó és egy kis égitest között lépnek fel, pl. a Hilda család kisbolygói, amelyek 3:2-es, míg a trójai kisbolygók 1:1-es középmozgás rezonanciában vannak a Jupiterrel. Forgács-Dajka, Sándor & Érdi (2018) a rezonanciváltozó geometriai jelentése alapján egy hatékony módszert dolgozott ki és mutatott be, mely segítségével minden előzetes feltevés nélkül könnyen megtalálhatóak a középmozgás rezonanciák. A FAIR módszer hatékonysága könnyen bemutatható már ismert kisbolygó-családok középmozgás rezonanciában lévő tagjai esetében, amelyek valamely nagybolygóval állnak középmozgás rezonanciában. A Neptunuszon túli vidék jelentős számú kisbolygót tartalmaz (TNO-k), ahol változatos orbitális pályákkal találkozhatunk, így ez a terület kimeríthetetlen tárházát nyújtja a különböző dinamikai problémáknak. Találhatunk itt nagyon elnyúlt pályákat, vagy éppen nagyon ferdéket is, melyek magyarázata bolygóevolúciós szempontból is igen fontos lehet. Kutatásunk első részében a FAIR módszert alkalmazva vizsgáljuk a dinamikai szempontból lényeges középmozgás rezonanciákat a Neptunusz óriásbolygóval. Terveink között egy online adatbázis közlése is szerepel, ahol az egyedi TNO-k dinamikai és fizikai tulajdonságai is feltüntetésre kerülnek.

Kővári Emese, Kovács Tamás, Forgács-Dajka Emese (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: A Neptunusz pályáján túli tartomány megoldásra váró dinamikai problémák kimeríthetetlen forrása. Célunk a transzneptun objektumok (TNO-k) egy nagyszabású felmérésének elkészítése dinamikai térképeken keresztül. Kutatásunk első része a transzneptun tér középmozgás-rezonanciáinak dinamikai szerepére koncentrál, a megértés eszközei klasszikus káoszindikátorokat bemutató dinamikai térképek. A kutatás második részének fókuszában a TNO-k kaotikus diffúziójának és stabilitási idejének számszerűsítése áll. A fázistérbeli kaotikus diffúzió kulcsfontosságú mennyiség adott rendszer hosszútávú dinamikájának megértésében. A kutatás első részében kiválasztott 4125 TNO esetében a diffúziós együtthatók becslése a Shannon-entrópia alkalmazásán alapul. Utóbbi mennyiség lehetővé teszi egyrészt a fázistérbeli instabil régiók kiterjedésének számszerűsítését (így mint káoszindikátor használható), másrészt a diffúziós együtthatók közvetlen származtatásának is hatékony eszköze. A karakterisztikus stabilitási idők ezt követően - normál diffúziót feltételezve - a diffúziós együtthatók reciprokaként becsülhetőek. A diffúziónak, valamint a stabilitási időknek a nagyszámú TNO-ra való meghatározása reményeink szerint a transzneptun tér szerkezetének általános feltérképezését is lehetővé teszi, dinamikai osztályok meghatározásával vagy a szakirodalomban fellelhetőek pontosításával együtt.

Kovács Tamás, Kővári Emese, Forgács-Dajka Emese (2022.01.01 - 2022.03.30)
Eötvös Loránd Tudományegyetem, Asztrofizikai és Űrtudományi Centrum

Kivonat: Napjaink bolygókutatásában a hosszú idejű stabilitásvizsgálat alapvető jelentőségű. Mindamellett, hogy a megfigyelési adatok egyre nagyobb mennyiségben állnak rendelkezésünkre és ezáltal egyre pontosabb bolygópályákat szolgáltatnak, a klasszikus stabilitásvizsgálat elengedhetetlen kelléke a gravitációs N-test probléma megoldása és a fázistrajektóriák elemzése. Egy olyan módszert alkalmazunk a bolygórendszerek stabilitásvizsgálatára, melynek alapja a megfigyelt mennyiségekből származtatott általánosított Rényi-entrópia. Jelen munkában a megfigyelt mennyiség, az exobolygó kutatásban jól alkalmazható, központi égitest radiális sebessége. Ebből fejtjük vissza a fázistérbeli viselkedést, majd a Poincaré-féle visszatérési idők segítségével határozzuk meg egy adott mozgás entrópiáját, komplexitását. Nagy teljesítményű számítógépek segítségével lehetőségünk nyílik a fázistér rekonstrukciójára, valamint a hosszú idősorokból származó lineáris algebrai feladatok elvégzésére. Eredményeink azt mutatják, hogy az entrópia-alapú megközelítés jó egyezést mutat a klasszikus káoszdetektálási módszerekkel.

Bíró Gábor, Papp Gábor, Barnaföldi Gergely Gábor, Majoros Balázs (2021. 06.01 – 2022. 03.30)
Wigner Fizikai Kutatóközpont és Eötvös Loránd Tudományegyetem

Kivonat: A világ legnagyobb részecskegyorsítóiban, mint amilyen a Nagy Hadronütköztető a CERN-ben vagy a Relativisztikus Nehézion-ütköztető a BNL-ben, több százezer kölcsönhatás történhet minden egyes másodpercben. A nagyenergiás nehézion-ütközések egy speciális részhalmazát képezik ezen eseményeknek, melyeknek célja az Univerzum keletkezésekor jelen lévő anyagnak, a kvark-gluon plazma tulajdonságainak a vizsgálata. A kísérletek mellett mindig szükség van numerikus számolásokra, például Monte Carlo eseménygenerátorokra. Ezen számolások azonban rendkívül számításigényesek: még egy modern CPU-val rendelkező gépnek is, a kísérleti adatok mindössze néhány másodpercének a szimulációja több órányi (akár több napnyi) gépidőt is igényelhet. Az LHC-nál történő fejlesztéseknek köszönhetően a jövőben ez még nagyobb kihívást jelent majd. A HIJING++ keretrendszer a nagyenergiás nehézion-fizikai Monte Carlo eseménygenerátorok következő generációja. A legújabb elméleti modellek és a beépített CPU párhuzamosítás segítségével képes lesz kihasználni a modern többmagos architektúrákat, ezáltal lecsökkenti a szükséges gépidőt és egyéb járulékos költségeket.

Ernő Dávid, Dávid El-Saig, Zoltán Lehóczky és Gergely Gábor Barnaföldi (2021.12.01 - 2022.04.30)
Wigner RCP és Lombiq Technologies Ltd. együttműködés

Kivonat: A Lombiq Technologies Hastlayer terméke lehetővé teszi a .NET platform szoftverfejlesztőinek, hogy FPGA-kat gyorsítókártyákként használjanak. Standard .NET programokat tud ekvivalens hadverimplementációvá alakítani, és ezzel az erre alkalmas algoritmusokat automatikusan felgyorsítani és az energiafelhasználásukat csökkenteni. A fejlesztők továbbra is szokványos .NET programokat írnak, nincs szükség hardvertervezői tudásra.

A Hastlayerhez minden támogatott FPGA gyorsítókártya esetében el kell készíteni a futtatást lehetővé tevő firmware és szoftver komponenseket. A Wigner FK-val közösen korábban már elkészült több platform támogatása is (Microsoft Catapult platform és Xilinx Alveo FPGA kártya család). A most következő szakasz célja a Hastlayer futását lehetővé tenni beágyazott rendszereken is, mint pl. amilyenek a Xilinx Zynq FPGA család tagjaival szerelt FPGA kártyák.

A Wigner feladata kifejleszteni a Hastlayer által generált hardverkomponensek futtatásához szükséges firmware keretrendszert Xilinx Zynq FPGA-ra, illetve az FPGA-ba lévő ARM processzorokon futó Linux operációs rendszer szükséges szintű módosításait elvégezni.

Csabai István, Gellért Ákos, Pál Balázs (2022.01.01 - 2022.03.30)
ELTE Komplex Rendszerek Fizikája Tanszék

Kivonat: A COVID-19 járvány az egész emberiség számára rendkívüli helyzetet teremtett, több millió emberéletet követelt és jelentős gazdasági visszaesést okozott. Ugyanakkor a nemzetközi kutatói közösség rövid időn belül minden eddiginél nagyságrendekkel nagyobb adathalmazt hozott létre, mely hozzájárulhat a járvány kialakulásának és dinamikájának megértéséhez, annak megfékezéséhez és hasonló pandémiák megakadályozásához. A GISAID és a COVID-19 Data Portal adatbázisokban több millió teljes SARS-CoV-2 genom található meg. A genetikai szekvenciákat a modern berendezéseknek köszönhetően viszonylag könnyen és gyorsan le lehet olvasni de nagyon nehéz pusztán a szekvenciák és a bennük gyülemlő mutációk alapján megmondani mennyire gyorsan terjedő, mennyire veszélyes az adott variáns. A genetikai információ fehérjékbe íródik át, majd a fehérjék térszerkezete, töltéseloszlása, kölcsönhatása a gazdaszervezet fehérjéivel határozzák meg a virus működését, a fenotípust. Összefoglalva, a genotípus-fenotípus problémakör a genetikai információk alapján a virus viselkedésének becslése.

Az elmúlt évben a rohamos ütemben fejloődő mesterséges intelligencia megközelítéssel sikerült egy olyan mérföldkövet elérni, ami jelentősen segítheti a genotípus-fenotípus kutatásokat. Az Alphafold2 módszer segítségével elfogadható idő alatt, kellő pontossággal meghatározható olyan nagy fehérjék térszerkezete. A gépi tanulás alapú Alphafold2 módszer jelentős számítási, elsősorban GPU kapacitást igényel.

Egy H2020 projekt keretében együttműködünk az EMBL-EBI szervezettel a SARS-CoV-2 genetikai archívum fejlesztésén. Célunk ennek kiegészítése minél több variáns fehérjéinek 3D szerkezetével és a szerkezetek segítségével a genotípus-fenotípus kérdés előremozdítása.

Stippinger Marcell, Telcs András (2022.01.01 - 2022.03.30)
Wigner Fizikai Kutatóközpont

Kivonat: A project célja olyan módszer kifejlesztése, amivel idősorok közötti oksági kapcsolat vizsgálható. A módszer lelke különböző feltételes idősorok Markovitás vizsgálata. A módszer középpontjában egy sor feltételes függetlenség vizsgálat van. Ezek végeredményét összesítjük majd egyszerű döntési fa vezet a konklúziohoz.

Sudár Ákos, Varga-Kőfaragó Mónika, Barnaföldi Gergely Gábor és Légrády Dávid (2021.07.01 - 09.30)
Wigner Fizikai Kutatóközpont és BME Nukleáris Technikai Intézet

Kivonat: A proton komputertomográfia (pCT) fejlesztésének célja a páciens relatív fékezési energia ( relative stopping power, RSP) eloszlásának pontos meghatározása, ezzel lehetővé téve a protonterápia során alkalmazott biztonsági zónák méretének csökkentését. A pCT képalkotás során a pácienst protonokkal világítják át, amelyek iránya és energiája a páciens előtt megválasztható, a páciens mögött mérhető, ami alapján meghatározható a protonok legvalószínűbb pályája (maximum likely path, MLP) és a páciensben leadott energiájuk. A mérési adatokból a térbeli kép rekonstruálása az order suppressed expectation maximalization (OSEM) módszer alkalmazásával történik, ami a maximum likelihood expectation maximalization (ML-EM) módszer egy gyorsított változata. A jelenlegi projekt célja egy párhuzamosított és részben grafikus kártyán futó program kifejlesztése a képrekonstrukciós idő minimalizálása érdekében. A szoftver későbbiekben a Bergen pCT Kollaboráció által fejlesztett detektorrendszer mérési adatainak képrekonstrukciója során kerül felhasználásra, ezzel hozzájárulva a kutatócsoport munkájához és későbbi publikációihoz.

Dr. Papp Gábor (ELTE), Bíró Gábor (Wigner FK), Feiyi Liu (ELTE), Xiangna Chen (CCNU, Wuhan), Dudás Bence (ELTE), Misur Patricia (ELTE) (2021.06.01-08.31)

Kivonat: A műtéttel nem hozzáférhető lokalizált rákos daganatok elpusztításának egyik hatékony módja a protonnal (vagy annál nehezebb He, illetve C ionokkal) történő sugárkezelés. Az eljárás során általában egy kezelés elég a hagyományos sugárterápiával szemben, mivel a proton igen jól fókuszálhatóan, kb. mm-es pontossággal tudnak roncsolni (a nehezebb ionok még nagyobb pontossággal). Azonban, mivel a proton és a gamma sugarak behatolási profilja különböző, a CT-s tomográfia nem kalibrált a proton nyalábra, és nem teszi lehetővé a készülék pontos beállítását, aminek következtében a gyakorlatban messze az elméleti határnál pontatlanabb a kezelés. A nagyobb pontosságot proton tomográfiával lehet elérni, amihez a kezeléshez használt protonnyalábot használjuk, nagyobb energián. A testen áthaladó részecskék detektálására egy a CERN technológián alapuló ALPIDE chipeken alapuló detektorrendszert fejlesztettünk ki a nemzetközi pCT együttműködés (https://wiki.uib.no/pct/index.php/Main_Page) keretében. Mivel a jelek feldolgozása időigényes folyamat, ezért azt idegháló alkalmazásával szeretnénk gyorsítani: a cél egy olyan ideghálózat kifejlesztése és betanítása, mely a detektorjelek alapján képes megmondani a testből kilépő protonok irányát és energiáját. Több szögben ezeket megmérve előállítható a vizsgált terület tomográfiás képe, és kiszámolhatóak a kezeléshez szükséges adatok.

Emese Forgács-Dajka*, István Balla** (2021.05.01-2021.11.31)

* Eötvös Lorán Tudományegyetem, Csillagászati tanszék
** Solar Physics and Space Plasma Research Centre (SP2RC), Department of Applied Mathematics, The University of Sheffield

Kivonat: Munkánk során a részlegesen ionizált plazmában fellépő - mint pl. a a Nap légkörében megfigyelhető protuberanciák esete -, a környező mágneses térre ferde irányban terjedő lökéshullámok jellegét és tulajdonságait vizsgáljuk. Elsősorban a megfigyelésekkel is alátámasztott lökéshullámok elemzését szeretnénk elvégezni, így eredményeink magyarázatként szolgálhatnak a protuberanciákban megfigyelt fényes foltok terjedésére is (Lin és mktsai, 2012).

Az összenyomható, egyfolyadékos magnetohidrodinamikai (MHD) egyenletek megfelelő skálázási eljárásokkal redukálhatók a jól ismert Burgers-egyenletre, melynek együtthatói a lökéshullám terjedési szögétől, a plazma β-tól és a plazma ionizációs fokától függenek. Modellünk jól alkalmazható mind a lassú, mind a gyors magnetoakusztikus lökéshullámok vizsgálata során. A lökésfront esetén a standard ugrási feltételeket használva (gyenge szórást feltételezve) meghatározhatók a termodinamikai mennyiségek ugrása is, melyek már összehasonlíthatóak a megfigyelésekből származó adatokkal.

A Cole-Hopf transzformáció segítségével oldjuk meg a kapott egyenletet, amely tulajdonképpen egyenértékű egy diffuziós egyenlet kezdetérték problémával. A megoldás során megvizsgáljuk, hogy mennyi időre van szükség ahhoz, hogy a kezdetben Gauss-féle hullámprofil lökéshullámmá feljődjön, azaz a hullámfront vastagsága az ionok szabad úthosszának nagyságrendjébe essen.

István Papp, Larissa Bravina, Mária Csete, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó (2020.10.16 - 2021.12.31)

Publikáció: Laser Wake Field Collider

Kivonat: A növekvő létszámú emberiség fejlődésének egyik kulcsa a hatékony, bőséges és környezetbarát energiatermelés. A ma ismert fizikai folyamatok közül hosszú távon erre a magfúzió alkalmas. Legígéretesebb, energia termelésre is alkalmazható módszer az inerciálisan bezárt fúzió. A tudomány jelen állása szerint ennek fejlődését visszafogják az összenyomás során keletkező hidrodinamikai instabilitások. Jelen kutatás ezek kialakulásának elkerülésére javasol megoldásokat két friss kutatási területből tanultakkal:
(i) egyidejű térfogati begyújtás [1], illetve
(ii) az abszorptivtás növelése nano-rúdak vagy nano-gömbök segítségével [2].
Az említett alapelvek alkalmazhatóak egy vonalon történő kétoldali lézer belövésnél is [3]. Hasonló kísérleti összeállítással már értek el sikeres eredményeket. Tanulmányozzuk a plazma gyorsítás hatásait az anyagban ,,ütköző" lézersugarak esetében. Ezek a vizsgálatok lézer fúzión kívül alkalmazhatóak más hasonló gyors fázisátalakulásoknál, vagy más anyagok hirtelen begyújtásánál.

Refernciák:
[1] L. P. Csernai and D. D. Strottman, “Volume ignition via time-like detonation in pellet fusion,” Laser Part. Beams. 33 (2), 279--282 (2015).
[2] L. P. Csernai, N. Kroo, and I. Papp, “Radiation dominated implosion with nano--plasmonics,” Laser Part. Beams. 36 (2), 171--178 (2018).
[3] L.P Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Starov, H. Stöcker, N. Kroó, "Radiation dominated implosion with flat target", Physics of Wave Phenomena, 2020, accepted for publication.

Légrády Dávid, Tolnai Gábor, Hajas Tamás, Pázmán Előd (2021.06.01 - 2022.04.30)
BME Nukleáris Technikai Intézet

Publikáció: Full Core Pin-Level VVER-440 Simulation of a Rod Drop Experiment with the GPU-Based Monte Carlo Code GUARDYAN

Kivonat: The GUARDYAN (GPU Assisted Reactor Dynamic Analysis, developed at BME Institute of Nuclear Techniques) Monte Carlo code directly follows the time evolution of the neutron field in a nuclear reactor. Contrary to the conventionally applied deterministic (i.e. non-Monte Carlo) or Monte-Carlo based techniques relying on quasistatic approximations modelling errors are minimal for GUARDYAN. For a fast evolving („hard”), localized transients even the magnitude of the modelling errors posed by conventional techniques can hardly be estimated, and experimental confirmation due to nuclear hazards is out of question. Therefore, simulations with GUARDYAN could be set as a gold standard for other computational methods. The project aims at the simulation of a rod ejection transient in a full-scale currently operational nuclear power plant type (VVER-440) using the code GUARDYAN.