A dynamical survey of trans-Neptunian space I.: Mean motion resonances with Neptune
Forgács-Dajka Emese, Kővári Emese, Kovács Tamás (2022.01.01 - 2022.03.30)
Eötvös Loránd University, Center for Astrophysics and Space Science
Grant: NKFIH 2020-2.1.1-ED-2021-00179
Abstract: Mean motion resonances (MMRs) play an important role in shaping the dynamics of the Solar system bodies. MMRs in the Solar system usually occur between a planet and small bodies, e.g. the members of the Hilda group of asteroids are in a 3:2, while the Trojan asteroids are in a 1:1 MMR with Jupiter. Based on the geometrical meaning of the resonance variable, an efficient method has been introduced and described in Forgács-Dajka, Sándor & Érdi (2018), by which mean motion resonances can be easily found without any a priori knowledge of them. The efficiency of this method - named FAIR - is clearly demonstrated by using some known members of different families of asteroids being in mean motion resonances with a planet. The region beyond Neptune contains a significant number of asteroids (TNOs) where diverse orbits can be encountered, so providing this space region an inexhaustible repository of various dynamic problems. Here we can find very elongated orbits, or even very oblique ones, the explanation of which can be very important from the point of view of planetary evolution. In the first part of our research, we will systematically apply the method FAIR to identify the dynamically relevant MMRs between TNOs and Neptune. Our plans also include the construction of an online database listing both the dynamic and physical properties of individual TNOs.