Investigating compact stars with Kaluza-Klein excitations
Anna Horváth [1,2], Gergely Gábor Barnaföldi [1], Emese Forgács-Dajka [2] (2023.09.01-2023.12.31 )
[1] Wigner Research Centre for Physics
[2] Eötvös Loránd University
Abstract: We are investigating compact stars within a static, spherically symmetric Kaluza-Klein-like theory that encompasses extra compactified spatial dimensions. We produced an equation of state that can be used to model neutron stars together with the Tolman-Oppenheimer-Volkoff equation. Simulating the structure of these objects (calculating their main observables, the mass and the radius) and carrying out a thorough analysis requires us to use computational-heavy programming. Stars with various boundary conditions (such as the central energy density) and theoretical parameters (like the size of the extra dimension) are considered. For this type of calculations it is essentially useful to utilise parallelism, which is best executed on multi-core processors. This project tests theories beyond the standard model of particle physics, with an emphasis on the possibility of giving constraints on the size of one extra compactified spatial dimension.