Bayesian investigation of effective QCD models with neutron stars
János Takátsy [1] Péter Kovács [1], György Wolf [1], Juergen Schaffner-Bielich [2] (2023.01.01 - 11.30)
[1] Wigner Research Centre for Physics
[2] University of Frankfurt
Grant: NKFIH FK 131982
Publication: What neutron stars tell about the hadron-quark phase transition: A Bayesian study
Abstract: The investigation of the phase diagram of Quantum Chromodynamics (QCD) at high densities is currently only possible through effective theories. Neutron stars are among the densest objects in our universe, possibly containing chirally symmetric matter as well. We calculate neutron star properties from our model with different parameterizations and confront the results with recent astrophysical observations. These astrophysical observations include mass measurements of neutron stars, NICER measurements and tidal deformability measurements of GW170817. We utilize a Bayesian framework to determine the most probable regions of the parameter space of our model, which requires high computing capacities in order to obtain the necessary statistics.