High Performance Computing for Nanofusion
István Papp, Larissa Bravina, Mária Csete, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó (2022.07.01 - 2022.12.31)
Abstract: Our dependence on fossil fuels grew more and more in the last century and today we are urged to find alternative energy sources. Laser driven fusion is a promising option for clean and safe energy production. The most successful configuration up to now uses indirect drive, the thermal radiation coming from a cylindrical Hohlraum. After the target is compressed by the incoming light, it develops Rayleigh-Taylor instabilities. An ongoing activity at Wigner Research Centre’s Nanoplasmonic Laser Fusion National Laboratory (NAPLIFE) collaboration is aiming for improving the chances of fusion by high-power short laser pulses and target fabrication, combining recent discoveries in heavy-ion collisions and optics [1]. Our aim is studying in simulations the surface plasmonic effect of resonant gold nano-antennas in different monomer mediums. The monomer serves only experimental purposes, proving the effectiveness of the nanorods. The plasmonic effect is vital for the project, since it will be used to manipulate the target’s absorption properties. The different layers of monomers with different gold nanoparticle densities will be studied, taking into account the lifetime of plasmons using a kinetic plasma model for conducting electrons [2]. The results will be essencial for future experiments in ELI-ALPS Szeged laser facility.
[1] L.P Csernai, N. Kroo and I. Papp, Radiation dominated implosion with nanoplasmonics, Laser and Particle Beams, Volume 36, Issue 2, June 2018 , pp. 171-178
[2] I. Papp, L. Bravina, M. Csete, et al., Kinetic model evaluation of the resilience of plasmonic nanoantennas for laser-induced fusion, PRX Energy, Vol. 1, Iss. 2 (2022)