Nanoplasmonic Laser Fusion
István Papp, Larissa Bravina, Mária Csete, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó (2022.01.01 - 2022.06.30)
Publication: Laser Wake Field Collider
Abstract: Inertial Confinement Fusion is a promising option to provide massive, clean, and affordable energy for humanity in the future. The present status of research and development is hindered by hydrodynamic instabilities occurring at the intense compression of the target fuel by energetic laser beams. NAno-Plasmonic, Laser Inertial Fusion Experiments (NAPLIFE) were proposed, as an improved way to achieve laser driven fusion. The improvement is the combination of two basic research discoveries:
(i) The possibility of detonations on space-time hyper-surfaces with time-like normal (i.e. simultaneous detonation in a whole volume)[1] and
(ii) to increase this volume to the whole target, by regulating the laser light absorption using nano-shells or nano-rods as antennas [2].
These principles can be realized in an in-line, one dimensional configuration, in the simplest way with two opposing laser beams as in particle colliders [3]. Such, opposing laser beam experiments were also performed recently. Here we study the consequences of the Laser Wake Field Acceleration (LWFA) if we experience it in a colliding laser beam set up. These studies can be applied to laser driven fusion, but also to other rapid phase transition, combustion, or ignition studies in other materials.
References:
[1] L. P. Csernai and D. D. Strottman, “Volume ignition via time-like detonation in pellet fusion,” Laser Part. Beams. 33 (2), 279--282 (2015).
[2] L. P. Csernai, N. Kroo, and I. Papp, “Radiation dominated implosion with nano--plasmonics,” Laser Part. Beams. 36 (2), 171--178 (2018).
[3] L.P Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Starov, H. Stöcker, N. Kroó, "Radiation dominated implosion with flat target", Physics of Wave Phenomena, 2020, accepted for publication.